绿盲蝽雌虫的浸提物分析*

苏建伟** 陈展册 张广珠 戈 峰

(中国科学院动物研究所虫害鼠害综合治理国家重点实验室 北京 100101)

Identification of extracted compounds of female *Lygus lucorum*. SU Jian-Wei ** , CHEN Zhan-Ce , ZHANG Guang-Zhu , GE Feng (*State Key Laboratory of Integrated Management of Pest Insects and Rodents* , *Institute of Zoology* , *CAS* , Beijing 100101 , China)

Abstract Semiochemicals extracted from virgin females of the green leaf bug , Lygus lucorum Meyer-dür , were analyzed by GC-MS. The volatiles extracted comprised ten compounds identified as esters , alcohols and acids. Among the compounds identified , (E)-2-hexenyl butyrate (E)-2-henenol , butyric acid , hexyl butyrate , and (Z)-3-henenol were the major components. Three compounds , hexyl butyrate , (E)-2-hexenyl butyrate and (E)-2-henenol significantly decreased with increased female calling activity. The fact the amount of (E)-2-hexenyl butyrate decreased from 7 200 ng per insect to 250 ng indicated that a large amount of (E)-2-hexenyl butyrate was emitted into the ambient air by females. Comparing the content of (E)-2-hexenyl butyrate in extracts from different parts of females , 89.75% was found in the thorax together with (E)-2-hexenyl butyrate is a component of the sex pheromone of female (E)-2-hexenyl butyrate is a component of the sex pheromone of female (E)-2-hexenyl butyrate is a component of the sex pheromone of female (E)-2-hexenyl butyrate is a component of the sex pheromone of female (E)-2-hexenyl butyrate is a component of the sex pheromone of female (E)-2-hexenyl butyrate is a component of the sex pheromone of female (E)-2-hexenyl butyrate is a component of the sex pheromone of female (E)-2-hexenyl butyrate is a component of the sex pheromone of female (E)-2-hexenyl butyrate is a component of the sex pheromone of female (E)-2-hexenyl butyrate is a component of the sex pheromone of female (E)-2-hexenyl butyrate is a component of the sex pheromone of female (E)-2-hexenyl butyrate is a component of the sex pheromone of female (E)-2-hexenyl butyrate (E)-2-hex

Key words Lygus lucorum, extract compounds, GC-MS, (E)-2-hexenyl butyrate

关键词 绿盲蝽,浸提物,气质联用,反之一丁酸己烯酯

绿盲蝽 Lygus lucorum Meyer-dür 属盲蝽科草盲蝽属 ,寄主植物有 100 多种 ,在我国各地均有分布 ,是我国重要的作物和果树害虫[1-5]。华北地区的绿盲蝽以卵在杂草、果树 (如枣树)上越冬 ,进入春季后解除滞育的绿盲蝽越冬卵在寄主植物上孵化并发育为第1代 ,而第2代绿盲蝽则陆续迁入农田为害农作物。绿盲蝽的成虫和若虫刺吸危害植物幼嫩组织 ,危害叶片造成叶片残缺破烂 ,危害花蕾则引起落花 ,危害果实形成畸形果和粗皮果 [6-10]。近年来 ,由于转 Bt 基因抗虫棉的大面积推广种植 ,以棉铃虫

为主的鳞翅目害虫得到了有效控制,棉田化学农药使用量大幅度减少,但是非靶标的刺吸式害虫(如棉蚜和棉盲蝽)却呈上升趋势,特别是绿盲蝽等盲蝽类害虫的发生数量剧增,为害逐年加重,成为当前我国转 Bt 基因棉上的主要害虫之一[10~14]。目前对绿盲蝽的田间种群监测

^{*} 资助项目:农业部公益性行业(农业)科技专项(200803011-3)。

^{**}通讯作者 ,E-mail: sujw@ ioz. ac. cn

收稿日期:2010-04-20,修回日期:2010-06-22

和调查的方法手段贫乏,还依赖于田间的扫网、灯诱和百株查虫,缺乏简便而高效的方法对绿盲蝽的田间种群进行监测和虫情预报^[11]。利用性诱剂的引诱专一性和灵敏性也许是一条可行途径。虽然国内外对盲蝽类的性信息素的时常是素的研究已有 20 多年,但在性信息素鉴定方面的进展不大。目前仅有包括 Lygus、Lygocoris、Campylomma、Phytocoris等属的 10 余种盲蝽^[15-19]。在我国大量发生且危害严重的绿盲蝽的性信息素的鉴定还未见报道,甚至其性信息素分泌的腺体以及其分布也未能确定。本文通过浸泡法对绿盲蝽雌虫的浸提物进行了提取分析和鉴定,以期发现对绿盲蝽雄虫有引诱作用的成分。

1 材料与方法

1.1 试虫浸提物制备

绿盲蝽成虫采自河北廊坊绿豆地,室内人工气候箱中(温度(25 ± 1)℃,相对湿度 60% $\pm10\%$,光周期 L: D = 16:8)繁殖种群,饲养方法参考陆宴辉等 $[^{20}]$ 的方法并改进,用四季豆($Phaseolus\ vulgaris\ L.$)在定制的大玻璃管内进行继代饲养(玻璃管两端开口,内径 $10\ cm$,管长 $15\ cm$,两端用纱布封好),每管 $20\ 头左右饲养。成虫羽化后,雌雄分开饲养。选取 <math>6.5\ H$ 龄(已性成熟)的未交配的雌虫进行试验。

在绿盲蝽雌虫发生明显的性召唤活动前(15:00-17:00)和活动后(7:00-9:00)用CO,进行麻醉,去除头部,将10头绿盲蝽解剖

1.2 仪器分析

样品用 GC-MS 分析。气谱为 HP 安捷伦 6890N ,连接 DB-WAX 石英毛细管柱(长 30 m , 内径 0.25 mm ,厚 0.25 μ m) ,质谱为 HP 5973N ,70 eV 电离方式。载气为氦气(流速 20 cm·min $^{-1}$)。炉温 200°C ,起始温度 30°C 保持 2 min ,以 3°C·min $^{-1}$ 的速度升温至 120°C 后以 10°C·min $^{-1}$ 的速度升温至 250°C ,保持 5 min。检测器温度 280°C ,每次 2 μ L 手动无分流进样。鉴定数据与 NIST 数据库和多种标准化合物(表 1)的总离子流图比对 ,确定挥发物的成分和释放量。

1.3 数据处理和统计分析

计算浸提物样品中各主要成分的平均含量。用t – 检验比较不同处理时间的各成分均值,取P = 0.05 的显著水平(SPSS10)。

2 结果与分析

2.1 浸提物的成分

通过 GC-MS 分析,确定 10 种化合物为绿盲蝽雌虫的浸提物中的组分(表 1),包括醇类,酸类和酯类(丁酸酯类,乙酸酯类)等。相对含量较高的依次有反-2-丁酸己烯酯、反-2-己烯醇、丁酸、顺-3-己烯醇、丁酸己酯等。同时,在部分样品中发现有痕量的丁酸庚酯。

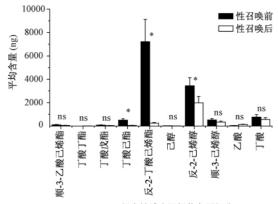

组分	保留时间	m/z
「酸丁酯	9. 25	71 ,89 ,56 ,43 ,41 ,29 ,57 ,27 ,60 ,73
丁酸戊酯	10. 63	43 ,71 ,70 ,89 ,42 ,41 ,55 ,27 ,29 ,39
顺⊰-己烯乙酸酯	11. 35	43 ,67 ,82 ,41 ,39 ,54 ,55 ,81 ,27 ,83
己醇	11. 69	56 ,55 ,43 ,41 ,69 ,42 ,39 ,57 ,84 ,44
反-2-己烯醇	12. 84	57 ,41 ,43 ,44 ,82 ,67 ,39 ,45 ,55 ,42
顺-3-己烯醇	12. 95	41 ,67 ,82 ,55 ,39 ,27 ,31 ,42 ,69 ,29
丁酸己酯	13. 24	43 ,71 ,89 ,56 ,41 27 ,84 ,42 ,55 ,29
乙酸	13.94	43 ,45 ,60 ,15 ,42 ,14 ,29 ,28 ,13 ,16
反-2-丁酸己烯酯	14. 55	71 ,43 ,41 ,67 ,55 ,82 ,27 ,83 ,39 ,54
丁酸	18. 14	60 , 73 , 41 , 27 , 42 , 43 , 45 , 29 , 39 , 55

表 1 绿盲蝽雌虫浸提物的成分

注:所有已鉴定的10种化合物都进行了与标准品的质谱图和保留时间的比对。

2.2 不同取样时间的成分差异

比较绿盲蝽雌虫在性召唤活动前和活动后的浸提物组分含量,发现3种成分包括丁酸己酯、反之一丁酸己烯酯和反之一己烯醇其含量都明显减少,特别是反之一丁酸己烯酯,从召唤活动前的平均7200 ng(占总量的60.32%)减少到召唤后的250 ng(占总量的8.66%)。这表明在绿盲蝽雌虫性召唤活动中,有大量的反之一丁酸己烯酯释放到体外。乙酸和己醇的含量略有增加但差异不显著,其它5种组分的含量减少但差异不明显(图1)。

绿盲蝽雌虫浸提物主要组分

图 1 绿盲蝽雌虫的浸提物中主要组分的平均含量ns:没有显著差异;*:有显著差异(t-检验 P=0.05 水平)

2.3 不同虫体部位的相对含量

在绿盲蝽雌虫的不同部位的浸提物的组分比较中,其胸部有较高的含量(图2)。在性召唤活动前,反2-丁酸己烯酯主要存在于虫体胸部,占总量的89.75%。反2-己烯醇也主要存在于胸部,达81.39%。在完成召唤活动后,绿盲蝽雌虫的反2-丁酸己烯酯含量急剧减少,特别是胸部含量的变化。值得注意的是,在性召唤活动后绿盲蝽雌虫翅上存在一定量的反2-丁酸己烯酯(占翅浸提物成分的45.21%),达到110 ng,推测它可能是来自于虫体胸部背面释放到体外后附着于翅上的,因为在性召唤活动之前,翅上的含量很小(<10 ng)。

3 讨论

由于目前关于盲蝽类昆虫的性信息素的分 泌腺的位置不是很确定[21,22]。Gueldner和 Parrott [23]利用水蒸法从牧草盲蝽 Lygus lineolaris (Palisot de Beauvois)提取物中鉴定出 丁酸己酯和反-2-丁酸己烯酯是主要组分,占 60%~90%。推测后胸腺可能是性信息素的分 泌腺体,如 Aldrich 等[24]报道从后胸腺提取物 中丁酸己酯和反-2-丁酸己烯酯这两个成分占 70%~80%,同时鉴定出的成分有反-2-已烯 醛、反之一己烯醇、己醇和反之 4-氧-己烯醛。从 豆荚盲蝽 Lygus hesperus Knight 的后胸腺中也 提取到丁酸己酯和反-2-丁酸己烯酯并作为主 要成分[15]。本研究是使用浸泡法用有机试剂 对绿盲蝽的分泌物进行抽提,发现丁酸己酯和 反-2-丁酸己烯酯这两个成分占酯类总量的 90% 以上,且这两个组分主要分布在胸部,所以 推测其分泌腺可能分布在绿盲蝽的胸部,而对 绿盲蝽的后胸腺的解剖和成分提取及鉴定仍在 进行中。

上述 Aldrich 等^[24]所报道丁酸己酯和反-2-丁酸己烯酯这两个化合物对牧草盲蝽具有明显的 EAD 活性^[25]。陈展册等^[26]在研究绿盲蝽触角的 EAG 反应时测试了 9 种酯类(丁酸酯类、乙酸酯类和甲酸酯类)后发现,绿盲蝽雄虫触角的最高 EAG 反应是由反-2-丁酸己烯酯引发的,雌虫对这些化合物的 EAG 反应值大小依次为:反-2-丁酸己烯酯 > 丁酸己酯 > 丁酸己酯 > 乙酸酶 > 丁酸己酯 > 丁酸己酯 > 乙酸声酯 > 丁酸可酯 > 丁酸己酯 > 乙酸庚酯 > 丁酸可酯 > 甲酸丁酯;丁酸酯类的 EAG 反应比乙酸酯类的高,甲酸酯类所激发的 EAG 反应比乙酸酯类的高,甲酸酯类所激发的 EAG 反应最弱。利用标样对绿盲蝽雄虫的 GC-EAD 测定中,亦发现丁酸丁酯和反-2-丁酸丁烯酯对绿盲蝽具有 EAD 活性(另文发表)。

丁酸酯类化合物是盲蝽科昆虫性信息素的主要组分之一,如丁酸丁酯和反2-丁酸丁烯酯是显角微刺盲蝽 $Campylomma\ verbas\ Meyer$ 的性信息素主要组分 $^{[15]}$,反2-丁酸辛烯酯是 $Phytocoris\ relativus\ Knight$ 的一种性信息素组分 $^{[16]}$ 。

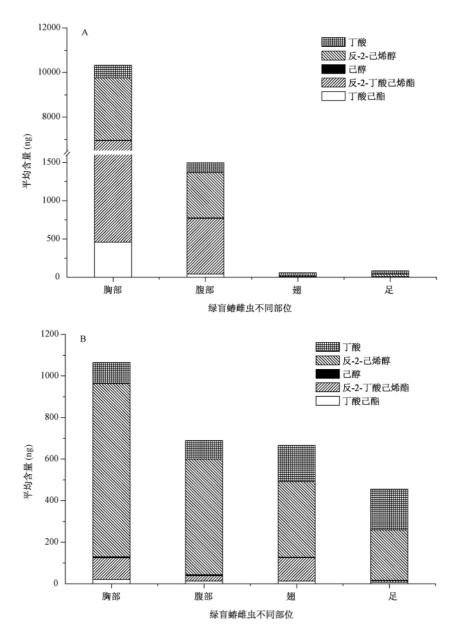


图 2 绿盲蝽雌虫不同部位的浸提物的主要成分含量 A: 性召唤活动前;B: 为性召唤活动后

在美国牧草盲蝽 L. lineolaris (Palisot de Beauvois)和普绿盲蝽 L. pabulinus L. 中发现,反之一丁酸己烯酯是其性信息素的一个主要的组分 [27,28]。 Innocenzi 等 [29] 报道丁酸己酯和反之一丁酸己烯酯和反4-氧之一己烯醛是 L. rugulipennis Poppius 的雌性信息素成分,并对雄虫有引诱性。本研究也表明,丁酸酯类物质如

反之-丁酸己烯酯在绿盲蝽雌虫的化学通讯中 具有很重要的信号作用,但绿盲蝽雌虫的性信 息素的组分是单一成分还是多组分、比例如何, 还需要更多的实验,特别是生测和田间诱捕进 行进一步的确定。

参 考 文 献

郑乐怡,娄朋逊,霍春雁,等.《中国动物志》(昆虫纲,第

- 33 卷,半翅目,盲蝽科,盲蝽亚科). 北京:科学出版社, 2004.
- 2 中国科学院动物研究所主编. 中国主要害虫综合防治. 北京: 科学出版社,1979.
- 3 朱弘复,孟祥玲. 三种棉盲蝽的研究. 昆虫学报,1958,8 (2):97~117.
- 4 萧采瑜,孟祥玲.中国棉田盲蝽记述.动物学报,1963, 15(3):439~449.
- 5 Wu K., Li W., Feng H., et al. Seasonal abundance of the mirids, Lygus lucorum and Adelphocoris spp. (Hemiptera: Miridae) on Bt cotton in northern China. Crop Protection, 2002, 21: 997 ~ 1 002.
- 6 丁岩钦.棉盲蝽生物学特性的研究 I. 温度和湿度对棉盲 蝽生长发育及地理分布的作用.植物保护学报,1963,2 (3):285~296.
- 7 高建敏,王永刚.绿盲蝽在枣树上暴发成灾的原因及防治方法.植保技术与推广,2002,22(3):25~26.
- 8 张秀梅,刘小京,杨艳敏,等. 绿盲蝽在 Bt 转基因棉及 枣树上的发生规律. 华东昆虫学报,2005,14(1):28~32.
- 9 郭建英,周洪旭,万方浩,等.两种防治措施下转 Bt 基因 棉田绿盲蝽的发生与为害.昆虫知识,2005,42(4): 424 ~428
- 10 许丰,于伟华. Bt 棉田内绿盲蝽发生规律及综合治理技术. 中国棉花,2007,34(10):35~36.
- 11 Wu K. , Guo Y. The evolution of cotton pest management practices in China. Annu. Rev. Entomol. , 2005 , $\bf 50$: 31 ~ 52.
- 12 门兴元,于毅,张安盛,等.不同温度下绿盲蝽实验种群生命表研究.昆虫学报,2008,51(11):1 216~1 219.
- 13 范广华,李冬刚.不同生态因子对抗虫棉绿盲蝽发生消长的影响.山东农业科学,2008,(2):75~76,80.
- 14 张永孝. 棉花不同生育期棉盲蝽的危害损失及防治指标研究. 植物保护学报,1986,13(2):73~78.
- 15 Smith R. F., Pierce H. D., Borden J. H. Sex pheromone of the mullein bug, Campylomma verbasci (Meyer) (Heteroptera: Miridae). J. Chem. Ecol., 1991, 17: 1 437 ~ 1 447.
- Millar J. G., Rice R. E., Wang Q. Sex pheromone of the mirid bug *Phytocoris relativus* Knight. *J. Chem. Ecol.*, 1997, 23: 1743~1754.
- 17 Millar J. G. , Rice R. E. Sex pheromone of the plant bug Phytocoris californicus (Heteroptera: Miridae). J. Econ.

- *Entomol.* , 1998 , $91: 132 \sim 137$.
- 18 Ho H. Y. , Millar J. G. Identification , electroantennogram screening , and field bioassays of volatile chemicals from Lygus hesperus Knight (Heteroptera: Miridae). Zool. Stud. 2002 , 41(3): 311 ~ 320.
- 19 Zhang Q. H., Aldrich J. R. Sex pheromones of plant bugs Phytocoris calli lnight. J. Chem. Ecol., 2008, 34: 719 ~ 724.
- 20 陆宴辉,吴孔明,蔡晓明,等. 利用四季豆饲养盲蝽的方法. 植物保护学报,2008,35(3):215~219.
- 21 Weeler A. G. Biology of the Plant Bugs (Hemiptera: Miridae): Pests, Predators, Opportunists. Cornell University Press, Ithaca and London. 2001. 105 ~ 135.
- 22 Millar J. G. Pheromones of true bugs. Topics in Current Chemistry, 2005, 240: 37 ~ 84.
- 23 Gueldner R. C., Parrott W. L. Volatile constitutes of the tarnished plant bug. *Insect Biochem.*, 1978, 8: 389 ~391.
- 24 Aldrich J. R. , Lusby W. R. , Kochansky J. P. , et al. Lygus bug pheromones vis-à-vis stink bugs. In: Proceedings , Beltwide Cotton Conference , National Cotton Council of America , Memphis , TN. 1988. 213 ~ 216.
- 25 Chinta S., Dickens J. C., Aldrich J. R. Olfactory reception of potential pheromones and plant odors by tarnished plant bug, Lygus lineolaris (Hemiptera: Miridae). J. Chem. Ecol., 1994, 20: 3 251 ~ 3 267.
- 26 陈展册,苏丽,戈峰,等. 绿盲蝽对性信息素类似物和植物挥发物的触角电位反应. 昆虫学报,2010,**53**(1):47~54.
- 27 Dickens J. C., Callahan F. E., Wergin W. P., et al. Olfaction in a hemimetabolous insect: Antennal-specific protein in adult Lygus lineolaris (Heteroptera: Miridae). J. Insect Physiol., 1995 A1: 857 ~867.
- 28 Groot A. T., Schuurman A., Visser J. H., et al. Laboratory bioassay of sex pheromone activity in *Lygocoris* pabulinus (L.) (Heteroptera: Miridae). In: Proceedings of the 13th Annual ISCE Meeting, Prague. International Society of Chemical Ecology. 1996, 189.
- 29 Innocenzi P. J., Hall D. R., Masuh H., et al. Investigation of long-range female sex pheromone of the European tarnished plant bug, Lygus rugulipennis: Chemical, electrophysiological, and field studies. J. Chem. Ecol., 2004, 30: 1509 ~ 1529.