东亚飞蝗谷胱甘肽 S - 转移酶 RNA 干扰效率研究^{\dagger}

刘 婷¹ 秦国华¹² 张建珍¹ 马恩波¹***

(1. 山西大学应用生物学研究所 太原 030006; 2. 山西大学环境与资源学院 太原 030006)

摘 要 东亚飞蝗 Locusta migratoria manilensis (Meyen) 是我国主要的农业害虫之一,已发现东亚飞蝗对某些农药产生了抗性,其抗性机制可能与谷胱甘肽硫转移酶(GST)代谢解毒相关。本研究利用特异性引物合成东亚飞蝗GST 4 个不同家族基因的双链 RNA(dsRNA) 将 dsRNA 注射到东亚飞蝗幼虫体内,采用 Real time RT-PCR 技术测定了干扰不同时间后目的基因 mRNA 的表达水平。结果表明 A 个不同家族 GST 的沉默效应具有时间差异。来自 delta 家族的 LmGSTdI 和 sigma 家族的 LmGSTsS 基因在注射 dsRNA 后 12 h 时 mRNA 量就已显著下降;而来自 theta 家族的 LmGSTtI 和 unknown 家族的 LmGSTuI 基因在注射 24 h 后 mRNA 水平才呈现显著下降。本研究对后续东亚飞蝗 GST 功能及抗性机制研究提供了基础资料和依据,同时对其它昆虫 RNA 干扰研究具有一定的借鉴作用。

关键词 谷胱甘肽硫转移酶,东亚飞蝗,RNA干扰,时间效应

The RNA interference efficiency of glutathione S-transferases from Locusta migratoria manilensis

LIU Ting¹ QIN Guo-Hua ^{1,2} ZHANG Jian-Zhen¹ MA En-Bo^{1**}
(1. Institute of Applied Biology, Shanxi University, Taiyuan 030006, China;

2. College of Environment and Resource , Shanxi University , Taiyuan 030006 , China)

Abstract The migratory locust, Locusta migratoria manilensis (Meyen) (Orthoptera: Acridoidea), is one of the most important pests in our country. Resistance of this locust to some insecticides has been detected and the resistance mechanism hypothesized to involve glutathione S-transferases (GST). In this study, double-stranded RNA of four different classes of GST was synthesized using specific gene primers and injected into the 2nd instar nymphs of L. m. manilensis. The effects of silencing time on target GSTs mRNA expression was assayed by real time RT-PCR. The results show that the expression of LmGSTd1 and LmGSTs5 were reduced significantly 12 h after injection, whereas LmGSTt1 and LmGSTu1 were reduced significantly 24 h after injection. These results provide a foundation for further study of GST function and mechanisms in locusts.

Key words glutathione S-transferases (GSTs), Locusta migratoria manilensis, RNAi, time effect

RNA 干扰(RNA interference,RNAi) 指利用外源或内源的双链 RNA (double-stranded RNA,dsRNA) 特异性地沉默基因表达。dsRNA 进入生物体内后,被一种称为 Dicer 的核酸酶切割,形成大约21~25 nt 的干扰性小 RNA 片段(siRNA),siRNA 识别并且靶向切割同源性靶 mRNA 分子,从而引起特异基因的沉默(Misquitta and Paterson,

1999; Zamore et al. , 2000) o

自 1995 年研究者在对秀丽隐杆线虫(Caenorhabditis elegans)的研究中发现了反义 RNA 沉默现象以来(Guo and Kemphues ,1995),作为一种新型的分子生物学技术,RNA 干扰在昆虫中主要用于对基因功能的研究,在害虫防治方面的研究还相对较少。Mao 等(2007) 在棉铃虫的研究

^{*} 资助项目: 国家自然科学基金重大国际合作项目(30810103907)、国家自然科学基金(30870302)、中国博士后科学基金(201003656 和 20090451359)。

^{***}通讯作者 Æ-mail: maenbo2003@ sxu. edu. cn 收稿日期: 2011-05-05 接受日期: 2011-05-12

中,将与代谢解毒直接相关基因的 dsRNA 在拟南芥和烟草上成功表达,棉铃虫取食转基因植物后相关基因表达受到抑制,从而对棉子酚的抗性显著降低,从而成功地证实了通过 RNAi 进行害虫防治是切实可行的。

东亚飞蝗 Locusta migratoria manilensis (Meyen),隶属于直翅目,蝗总科,斑翅蝗科,飞蝗 属。东亚飞蝗以禾本科与莎草科植物为食,是农业 生产中最为重要的害虫之一(朱恩林,1999)。作者 所在课题组于 2004 年首次提出东亚飞蝗具有抗药 性 且其抗药性机制可能与谷胱甘肽 S-转移酶 (glutathione S-transferases GSTs) 代谢解毒相关(Ma et al., 2004; Yang et al., 2009)。GSTs 是生物体内 的一类Ⅱ相代谢酶,能使有害的亲电物质与内源的 还原型谷胱甘肽(reduced glutathione, GSH)结合, 使之更易于排出体外(刘小丽等,2003;宣涛等, 2009)。GSTs 也是涉及代谢抗性的重要解毒酶之 一 ,主要介导有机磷、拟除虫菊酯和 DDT 等的抗性 , 昆虫杀虫剂抗性水平与 GSTs 活性水平相关(刘小 丽等 2003; 宣涛等 2009)。作者最近已获得东亚飞 蝗10个GST基因的全长,分别属于delta、sigma、 theta 和 unknown 4 个家族(Qin et al., 2011)。

本文利用 RNA 干扰技术沉默 4 个不同家族 谷胱甘肽 S - 转移酶基因 ,在 $12 \times 24 \times 48 \times 72$ 和 96 h 分别检测不同家族 GST 基因 mRNA 表达水平 ,探

索不同家族 GST 基因的干扰效率及最佳干扰时间,为进一步开展各 GST 基因功能及其在抗药性的作用提供研究基础,并为其它昆虫的 RNA 干扰研究提供参考和借鉴。

1 材料与方法

1.1 材料和试剂

东亚飞蝗: 从广西南宁购买虫卵,人工气候箱进行孵化,光照 L: D=14:10,温度 (30 ± 2) °C,相对湿度为60%。选择同一时间孵化的若虫转移至纱笼中,给以新鲜小麦幼苗和适当的光照,喷水保持湿度。

试剂: RNA 提取试剂 RNAiso[™] Plu 和 DNase I (RNase Free) 购于 Takara 公司; RevertAid[™] H Minus M-MuLV 反转录酶购于 Fermentas 公司; 2 × Taq PCR MasterMix 购于天根公司; SYBR® Premix Ex Taq[™] II 购于 TaKaRa 公司; Wizard® SV Gel and PCR Clean-Up System 试剂盒和 T7 RiboMAX[™] Express RNAi System 试剂盒均购于 Promega 公司。

1.2 东亚飞蝗谷胱甘肽硫转移酶引物设计

根据已知的东亚飞蝗谷胱甘肽硫转移酶基因片段,使用 primer Express 3.0 软件设计 GST 基因的 dsRNA 合成引物和表达引物,所有引物均由上海英骏公司合成。

表 1 东亚飞蝗谷胱甘肽硫转移酶基因的 dsRNA 合成引物和表达引物 Table 1 Primers used for expression analysis and dsRNA synthesis of GSTs

GenBank	Gene	Primers	Sequence(5´-3´)
HM131834	LmGSTd1	ds-F	TAATACGACTCACTATAGGGGCAAAGAAGAGAGAGCATTGGTGA
		ds-R	TAATACGACTCACTATAGGGGCTCCTGCGTGATTAGTTTCTTC
		RT-F	ACAGATGAAGCCAGAGTA
		RT-R	TCCTTAGGGTAAAGTGAGT
HM131840	LmGSTs5	ds-F	TAATACGACTCACTATAGGGACATGGCAGTTGACACAATATCAG
		ds-R	TAATACGACTCACTATAGGGTGGTCTCTTGCTAATCCACTCCTT
		RT-F	GGGAAGACGACGTGCAGTCT
		RT-R	CTGCAGATCTTCCCAGTCATTG
HM131843	LmGSTt1	ds-F	TAATACGACTCACTATAGGGTGGCAAATGACATCCCTTAT
		ds-R	TAATACGACTCACTATAGGGTGGCAAATGACATCCCTTAT
		RT-F	CCAGAACAGTGGCTAGGCGGGAACG
		RT-R	GTGGGACACCTCCATACTT
HM131835	LmGSTu1	ds-F	TAATACGACTCACTATAGGGCGCCTGGTCCGTTTAGTG
		ds-R	TAATACGACTCACTATAGGGTCCAGCCCTTCGTTCACTT
	β-actin	RT-F	GAACGAAGGCTGGAAAC
		RT-R	GAGCGATGACAGGGAGAT

1.3 东亚飞蝗谷胱甘肽硫转移酶基因的干扰效 果的检测

1. 3. 1 东亚飞蝗谷胱甘肽硫转移酶基因 dsRNA 的合成 根据已得到的东亚飞蝗谷胱甘肽硫转移酶的核苷酸序列,设计特异性 dsRNA 合成引物,引物信息见表 1。以克隆测序确认含有各基因全长序列的质粒 DNA 为模板进行 PCR 扩增,扩增条件为 95℃ 3 min 95℃ 30 s ,55℃ 30 s ,72℃ 30 s ,25个循环,72℃10 min。所得 PCR 产物用 Wizard® SV Gel and PCR Clean—Up System (Promega) 试剂盒回收纯化。对纯化后的 PCR 产物进行定量,使所获产物满足进行 dsRNA 体外合成的量。 dsRNA合成参照 T7 RiboMAX™ Express RNAi System (Promega) 试剂盒进行,最后得到的 dsRNA 用 1.5%的琼脂糖凝胶电泳检测,酶标仪(Molecular Devices,Menlo Park,CA,USA)将其定量至终浓度为 1.5 μg/μL,保存至 –80℃备用。

1.3.2 dsRNA 的体外注射 选取东亚飞蝗 2 龄第 3 天大小均一、健康状况一致的若虫为实验用虫。使用微量注射器(宁波三爱仪器厂)自虫体腹部侧面第 2 至 3 腹节的侧膜处进行注射,处理组注射 dsRNA 的量为 3 μ g,对照组注射相等体积的无菌水,每组均注射 50 头若虫,若虫注射后放入与 1.1 条件相同的人工气候箱内饲养,分别于 12、24、48、72 和 96 h 取样,每一时间点设 3 个生物学重复,每个生物学重复含 3 头若虫。样品在液氮中迅速冷冻后保存于 -80 个中备用。

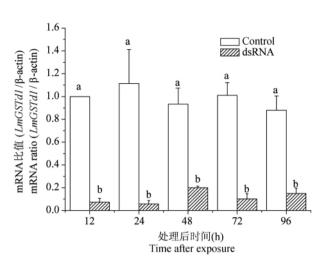
1.3.3 不同时间点整虫 cDNA 第一链的合成 采用 RNAiso[™] Plus (Takara) 提取各组若虫的总 RNA 并用 DNase I (RNase Free) 纯化所提取的 RNA RNA 电泳与定量检测后 ,参照 RevertAid[™] H Minus M-MuLV 反转录酶说明书以 0.5 μg 进行 cDNA 模板的合成。

1. 3. 4 实时荧光定量 PCR 分析东亚飞蝗谷胱甘肽硫转移酶 mRNA 水平的表达 以上述 cDNA 为模板进行实时荧光定量 PCR 扩增。反应采用荧光染料 SYBR Green I 在 ABI Prism 7300 进行,PCR 扩增条件为: $95 \,^{\circ} \,^{\circ}$

物学重复,每个样品2次技术重复。

1.4 数据统计与分析

将 12 h 对照组目的基因与 β -actin 相对表达量比值标准化为 1 ,其余各组为目的基因与 β -actin 相对表达量比值与对照组的比值。采用 SPSS15. 0 进行统计学检验,结果为平均值 \pm 标准误(n=3),采用 Fisher's LSD 多重比较检验,P<0. 05 表示有显著性差异。


2 结果与分析

运用 Real-time qPCR 对东亚飞蝗注射不同家族 GST 基因 dsRNA 后不同时间点各基因的 mRNA 表达水平进行了分析 ,结果显示: LmGSTdI 在注射 dsRNA 后 12 h 时 mRNA 的表达量显著下降 , mRNA 水平仅为对照组的 7.33% ,在 48 h 后 mRNA 表达量有所回升 ,但干扰效率仍在 80% 以上(图 1)。与 LmGSTdI 相似 ,LmGSTs5 也在注射 dsRNA 后 12 h 时 mRNA 量显著下降 ,为对照组的 7.9% ,但高水平的干扰效率一直持续到 96 h 尚未恢复(图 2)。LmGSTtI 和 LmGSTuI 虽在注射 dsRNA 后 12 h 时有所下降 ,但与对照组相比统计学检验并不显著 在 24 h 后 mRNA 量呈现显著下降 (图 3 4)。

3 讨论

RNAi 即双链 RNA 介导的同源 mRNA 特异性降解的过程。具体来说,就是暴露在细胞内部的dsRNA 首先被加工成 21~23 nt 的 siRNA ,然后形成的 RNA 诱导沉默复合物介导了 mRNA 的特异性降解,导致转录后基因沉默。作为一种高效、特异的调节基因表达技术,RNAi 技术可以很容易地导致个体特定基因缺失表型,在研究基因功能时更加方便、快捷(Napoli et al. ,1990)。

利用 RNAi 研究基因的主要特点有: (1) RNAi 特异性强,能够专一性地降解与序列相应的单个内源基因的 mRNA,但不影响其它基因的表达(Fire et al.,1998)。(2) RNAi 抑制基因表达具有高效性,相对很少量的 dsRNA 分子(远少于内源 mRNA 的数量) 就能完全抑制该基因的表达。(3) RNAi 抑制基因表达的效应不受细胞限制,在不同细胞间可以长距离传递和维持。(4) 使用范围广、成本低。综上所述,RNAi 能高效特异地抑

图 1 LmGSTd1 不同时间的干扰效率

Fig. 1 Silencing effects of *LmGSTd1* at different time 注:图中数值为平均值 \pm 标准误 将 12 h 对照组标准化为 1(目的基因值 /β-actin) ,其余各组数值为与对照组的比值 (n=3)。采用 Fisher's LSD 多重比较检验,不同字母表示有显著性差异(P<0.05)。下图同。

Averaged data from three independent experiments are given together with SE. Mean expression in each groups is shown as a fold increased compared to mean expression in control group at 12 h which has been ascribed an arbitrary value of 1 (taget gene/ β -actin) . Different letters represents significant difference at 0.05 level. (Fisher's LSD multiple comparison test) . The same below.

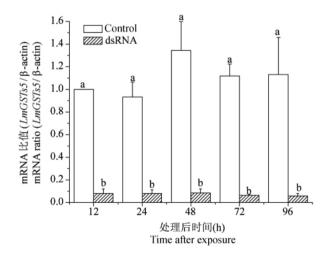


图 2 LmGSTs5 不同时间的干扰效率 Fig. 2 Silencing effects of LmGSTs5 at different time

制基因的表达,因而广泛应用于基因功能的研究(Montgomery *et al.*, 1998)。

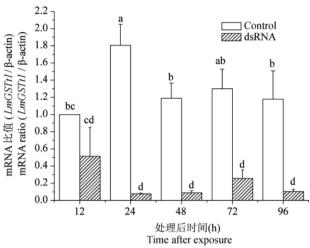


图 3 LmGSTt1 不同时间的干扰效率

Fig. 3 Silencing effects of LmGSTt1 at different time

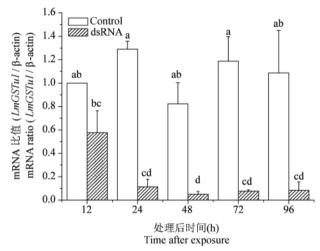


图 4 LmGSTu1 不同时间的干扰效率

Fig. 4 Silencing effects of LmGSTu1 at different time

在昆虫 RNAi 研究中,主要的方法有注射、浸泡、喂食和转基因等方法。对于某种特定的昆虫来说,选择一种合适的 dsRNA 导入方法是至关重要的。将体外合成的 dsRNA 通过微量操作器注射入体内后很容易在体内扩散,引起 RNAi ,且干扰效果明显,定量准确,所以作者选择微量注射的方法。有研究表明,在不同物种间达到明显 RNAi 效果所需要的 dsRNA 的有效剂量是不同的,有的可以相差几个数量级。如在鞘翅目昆虫中,某一基因达到明显 RNAi 效果的 dsRNA 剂量,用于鳞翅目昆虫则没有效果而必须加大所使用剂量(Zhuang et al., 2008)。推测上述现象的原因是不同物种体内的 RNAi 体系及机理不尽相同

(Arakane *et al.*, 2005)。本实验中采用 3 μg 对 2 龄东亚飞蝗若虫进行注射,得到了很好的干扰效 果。

RNAi 的时效性是很受关注的问题,在众多方 法中,注射法的 RNAi 效果最为直接,因为 dsRNA 可以直接进入生物体随开放式循环而迅速遍布全 身,所以了解注射后何时开始出现干扰效应,何时 干扰效果最好就显得非常重要。本实验中选择东 亚飞蝗 2 龄第 3 天的若虫进行注射,若选择太小 的虫体,因其腹节较短不易操作;若选择较大若 虫 则需加大注射剂量造成伤口过大增加其死亡 率。故2龄第3天是东亚飞蝗较为理想的注射时 期。不同的物种其 RNAi 持续的时间也不尽相同, 因此检测 RNAi 效果的时间点就显得尤为重要 (Levin et al., 2005)。检测的时间过早,很有可能 RNAi 效应还未开始,则检测不到预期的干扰效 果; 检测时间过晚,则可能由于 mRNA 恢复至正常 水平,干扰效果可能大幅度降低,也不能检测到 RNAi的效果。本实验在大量重复预实验的基础 上,发现不同家族 GST 基因最佳干扰效果出现的 时间不同, delta 和 sigma 家族的 LmGSTd1 和 LmGSTs5 是在 12 h 出现 ,而 theta 和 unknown 家族 的 LmGSTt1 和 LmGSTu1 则是在 24 h 出现 ,所有家 族的 GST 在出现干扰效果之后较长的一段时间内 都保持较好的干扰效果。

本文对后续进行东亚飞蝗 GST 的功能及抗药性研究有重要的指导意义,为进一步鉴定 GST 基因功能提供了基础资料,同时,本研究为基于RNAi 技术对东亚飞蝗进行有效控制奠定了基础,对其它昆虫开展 RNA 干扰研究也有一定的借鉴意义。

参考文献(References)

- Arakane Y, Muthukrishnan S, Kramer KJ, 2005. The *Tribolium* chitin synthase genes *TcCHS1* and *TcCHS2* are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. *Insect Mol. Biol.*, 14(5):453—463.
- Fire A , Xu S , Montgomery M , Kostas S , 1998. Potent and specific genetic interference mediated by double-stranded RNA in *Caenorhabditis elegans*. Nature , 391:806—811.
- Guo S , Kemphues KJ , 1995. par-I , a gene required for establishing polarity in C. elegans embryos , encodes a putative Ser/Thr kinase that is asymmetrically distributed.

- Cell, 81(4):611—620.
- Levin DM, Breuer LN, Zhuang S, Anderson SA, Nardi JB, Kanost MR, 2005. A hemocyte-specific integrin required for hemocytic encapsulation in the tobacco hornworm, Manduca sexta. Insect Biochem. Mol. Biol., 35(5):369—380.
- 刘小丽,廖祥儒,赵立梅,2003. GST 酶的提取纯化及特性分析.河北大学学报(自然科学版),23(2):170—174.
- Ma EB, He YP, Zhu KY, 2004. Comparative studies of acetylcholinesterases purified from two field populations of the oriental migratory locusta (*Locusta migratoria manilensis*): implications of insecticide resistance. *Pest Biochem. Physiol.*, 78(1):67—77.
- Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY, 2007. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. *Nature Biotechnology*, 25 (11):1307—1313.
- Misquitta L , Paterson BM , 1999. Targeted disruption of gene function in *Drosophila* by RNA interference (RNAi): a role for nautilus in embryonic somatic muscle formation. *Proc. Natl. Acad. Sci. USA* , 96(4): 1451—1456.
- Montgomery MK, Xu SQ, Fire A, 1998. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA, 95 (26):15502—15507.
- Napoli C , Lemieux C , Jorgensen R , 1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous gene in trans. Plant Cell , 2(4): 279—289.
- Qin G, Jia M, Liu T, Xuan T, Yan Zhu K, Guo Y, Ma E, Zhang J, 2011. Identification and characterisation of ten glutathione S-transferase genes from oriental migratory locust, Locusta migratoria manilensis (Meyen). Pest Manag. Sci., 67(6):697—704.
- 宣涛,吴海花,郭亚平,2009. 东亚飞蝗谷胱甘肽 S 转移 酶分离纯化. 昆虫知识,46(3):480—484.
- Yang ML, Zhang JZ, Zhu KY, Xuan T, Liu XJ, Guo YP, Ma EB, 2009. Mechanisms of organophosphate resistance in a field population of oriental migratory locust, Locusta migratoria manilensis (Meyen). Arch. Insect Biochem. Physiol., 71(1):3—15.
- Zamore PD, Tuschl T, Sharp PA, Bartel DP, 2000. RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. *Cell*, 101(1): 25—33.

朱恩林,1999. 中国东亚飞蝗发生与治理. 北京:中国农业出版社.3—558.

Zhuang SF , Lisha K , James BN , 2008. Multiple alpha

subunits of integrin are involved in cell-mediated responses of the Manduca immune system. $Dev.\ Comp.\ Immunol.$, 32(4):365-379.