

东方蜜蜂气味受体基因 Or1 和 Or2 的 克隆与序列分析^{*}

赵慧婷¹** 高鹏飞¹ 张桂贤¹ 张春香¹ 马卫华^{1,2} 姜玉锁¹***

摘 要 本研究采用自行设计的引物对东方蜜蜂 Apis cerana Fabricius 气味受体 (odorant receptors) Or1、Or2 的部分 基因组序列 (GenBank 登录号为: JN544932, JN544931) 进行了克隆、测序和分析, 以探寻传统气味受体 (AcOr1) 和 非典型气味受体 (AcOr2) 基因在近缘种昆虫间的进化差异。试验所得的东方蜜蜂气味受体基因 Or1、Or2 的序列 长度分别为 1 247 bp 和 1 138 bp, 各包含 4 个和 2 个内含子, 编码区序列长度分别为 682、686 bp。经序列比对发现, 两气味受体 DNA 序列在东、西方蜜蜂及熊蜂间差异较大, 最低相似性仅为 56% (AcOr1—BtOr82a-like), 差异的 主要来源为内含子长度及其碱基的变异, 而编码区氨基酸序列相似性较高, 均达 85% 以上; 从整体分析来看, 在膜 翅目昆虫中, 非典型气味受体 AcOr2 较传统气味受体 AcOr1 是相对保守的气味受体基因。 关键词 东方蜜蜂, 气味受体, 序列对比, 进化分析

Gene cloning and sequence analysis of Or1 and Or2 in Apis cerana

ZHAO Hui-Ting^{1**} GAO Peng-Fei¹ ZHANG Gui-Xian¹ ZHANG Chun-Xiang¹ MA Wei-Hua^{1,2} JIANG Yu-Suo^{1***}

College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China;
Institute of Horticulture, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China)

Abstract Two odorant receptors, the parial DNA sequences AcOrI, AcOr2 (Genbank accession number: JN544932, JN544931) of *Apis cerana* Fabricius were cloned using PCR. The aim was to explore the evolutionary diversity of conventional and atypical odorant receptors among related species. The cloned fragments of AcOrI and AcOr2 were 1 247 bp and 1 138 bp in length, and contained 4 and 2 introns respectively. The coding region lengths were 682 bp and 686 bp respectively. Sequence alignment showed that genome sequences were highly divergent in different insects of *A. cerana*, *A. mellifera* and *Bombus terrestris* with minimum identity of 56% (AcOrI-BtOr82a-like). These differences were primarily due to variation in nucleotides and intron length, although amino acid sequences shared high identity ($\geq 85\%$). Compared with AcOrI, AcOr2 appears to be a relatively conservative odorant receptor in Hymenopteran insects. **Key words** *Apis cerana*, odorant receptors, sequence alignment, evolution analysis

昆虫具有特殊的嗅觉系统,用来感知外界环 境中的气味信号,当气味分子与嗅觉神经元上的 受体结合后产生一系列的化学信号,并将其传递 到被激活的大脑中枢神经元中,从而对气味做出 判断,并进一步调节昆虫相应的行为,如觅食、交 配、产卵、同族识别及躲避敌害等(Robertson et al., 2003; Field et al., 2009)。昆虫气味受体 分为两类:一类是传统气味受体,另一类是 Or83b 受体家族,亦称为非典型气味受体。传统气味受 体的氨基酸序列在不同昆虫中同源性很低,而

***通讯作者, E-mail: jiangys - 001@163.com

^{*} 资助项目:国家自然科学基金项目(31040078)。

^{**} E-mail: zhaohting@ yahoo. com. cn

收稿日期:2012-02-07,接受日期:2012-03-28

Or83b 受体家族较为特殊,其氨基酸序列和功能在 不同昆虫中都是高度保守的。Or83b 本身并无感 受气味的功能,在大多数的嗅觉神经元中它必须 与传统气味受体形成异质二聚体复合物,来共同 完成感受气味分子的功能(Krieger *et al.*, 2003; Larsson *et al.*, 2004; Hallem *et al.*, 2006)。

昆虫的气味受体具有与线虫和脊椎动物截然 相反的拓扑结构,其受体蛋白的 N 末端位于细胞 膜内,而 C 末端位于细胞膜胞外(Benton et al., 2006; Wistrand et al., 2006),这使得昆虫的气味 识别机制成为研究的热点。到目前为止,在气味 受体的鉴定(Clyne et al., 1999; Robertson et al., 2006, 2010)、结构特征(Benton et al., 2006; Wistrand et al., 2006)、组织特异性表达 (Robertson and Wanner, 2006; Patch et al., 2009; 张帅等,2009)、功能(Wanner et al., 2007; Nichols et al., 2010; Marshall et al., 2011)及信号转导机 制方面(Sato et al., 2008; Wicher et al., 2008; Nichols and Luetje, 2010)已做了大量研究。

蜜蜂是对人类有益的昆虫,随着人们对蜜蜂 生物学特点认识和研究的深入,蜜蜂从经济昆虫 走向模式生物的研究已逐渐兴起。Krieger 等 (2003)利用 Or83b 家族保守性,扩增出了西方蜜 蜂的 Apis mellifera L. 第一个气味受体基因 AmelR2。在西方蜜蜂全基因组测序的完成后 (Weinstock et al., 2006), Robertson 等(2006)利 用生物信息学方法,从其基因组中共鉴定到了170 个 Or 基因,通过聚类分析也找到了西方蜜蜂的 Or83b 家族成员,定名为 AmOr2。东方蜜蜂 Apis cerana Fabricius 是西方蜜蜂的近缘种,因其具有善于采集零星蜜源、耗蜜量低、抵抗胡蜂及有节制的 产卵等优点受到广大养蜂者的欢迎(杨冠煌, 2001;曾志将,2002),而有关东方蜜蜂气味受体 方面的文章还未见报道,本文以东方蜜蜂为研究 对象,克隆和分析了东方蜜蜂两类不同气味受体 Orl和 Or2的基因组序列,为进一步研究昆虫气味 受体的起源及进化规律提供基础数据。

1 材料与方法

1.1 供试样本与试剂

东方蜜蜂取自山西农业大学动物科技学院实验中蜂场,每群随机抓取数只工蜂,采用常规的酚-氯仿抽提法从工蜂的胸部肌肉中提取基因组DNA,用核酸测定仪(ND1000)测定其浓度及纯度,选取其中质量最好的个体 DNA 进行后续扩增试验。

Taq DNA 聚合酶、pGM-T 克隆试剂盒为天根 生化公司产品;普通琼脂糖凝胶回收试剂盒,质粒 小提试剂盒为 Omega 公司产品;内切酶 EcoRI 为 Takara 公司产品;其它试剂为国产或进口分析纯 试剂。

1.2 引物设计

根据 GenBank 中已发表的近缘种西方蜜蜂 AmOr1、AmOr2 序列(登录号分别为: NC_ 007071.3, NC_007070.3), 分别设计了2对扩增序 列有重叠区域的引物用于扩增东方蜜蜂相应基因 组序列(AcOr1、AcOr2), 引物序列如表1所示。

1	able 1 Specific primers used for amplification Acori and	ACUIZ		
目的基因	扩增用引物	扩增产物长度		
Objective gene	Primer	Size of product		
	F1:5' - CAAGGAGGACAACACGACTCA -3'	656 hr		
	R1:5' - TGCTCAGTGATTCTCCAACCC -3'	050 bp		
AcOrl	F2:5' - TGAACGATGTCGATAACACG -3'	006 h-		
	R2:5' - GTAGGCTGCCGAAGTTTT -3'	990 bp		
	F1:5' - TCACCATGCTCTTCTTCACG - 3'	767 hr		
	R1:5 ⁻ - CGCTGAATTCCATCAAAGGC - 3 ⁻			
AcOr2	F2:5′ – TGCTCGTGGCTCCTGTTCGC – 3′	447 bp		
	R2:5' - AGCAGTTGGCCGGAAGGTGG -3'			

表1 用于扩增 AcOr1 和 AcOr2 的特异性引物 Table 1 Specific primers used for amplification AcOr1 and AcOr2

1.3 AcOrl 和 AcOr2 基因组 DNA 的扩增、克隆 与测序

以提取的工蜂基因组 DNA 为模版,用上述引物分别进行 PCR 扩增,PCR 反应条件为:94℃ 预变性4 min;94℃ 30 s,52~58℃ 30 s,72 ℃ 1 min,32 个循环;72℃延伸8 min。PCR 产物经 1% 的琼脂糖凝胶电泳检测后进行割胶回收,将回收产物连接到 pGM-T 载体上,然后转化到 DH5α 感受态细胞中,挑取白色单克隆菌斑,摇菌培养后提取质粒,最后经 EcoR I 双酶切位点鉴定后选取阳性质粒送北京华大基因研究中心进行测序。

1.4 序列分析

测序结果首先在 NCBI 中经 BLAST (http: / / blast. ncbi. nlm. nih. gov/Blast. Cgi) 搜索比对检 查序列的正确性,然后采用 DNAman 软件进行序 列拼接,拼接结果及各同源序列经 Clastal W 软件 进行比对分析,最后利用 Mega4.0 中 Neighbor-Joining(NJ)法构建系统发育树。

2 结果与分析

2.1 序列测定

通过对东方蜜蜂 DNA PCR 扩增产物的克隆、 测序及序列拼接,获得了 2 条气味受体部分基因 组序列,根据对应的西方蜜蜂气味受体序列,分别 命名为 AcOr1 和 AcOr2 (GeneBank 登录号分别为: JN544931, JN544932)。AcOr1 序列长度为 1 247 bp,包含 5 段外显子和 4 个内含子 (为全序列完整 的内含子区),A+T 含量为 70.3%,G+C 含量为 29.8%;AcOr2 序列长度为1 138 bp,包含 3 段外显 子和 2 个内含子,A+T 含量为 58.9%,G+C 含量 为 41.1%。2 条序列的基因结构模式如图 1 所 示。

2.2 同源性比对

2.2.1 核苷酸序列分析 测序结果经 BLAST 搜索,分别找到 2条与 AcOrl、AcOr2 同源的序列进行 多序列比对(图 2,3)。从图 2,3 中可以看出,两气 味受体 DNA 序列长度在 3个昆虫中差异较大,但 外显子区长度是较为保守的(仅熊蜂 Or2 序列比 东、西方蜜蜂 Or2 多出 3个碱基)。通过序列比对 分析 得到: AcOr1 与 AmOr1 相似性为 84%,与 BtOr82a-like 相似性为 56%,其中内含子区相似性 分别为 71% 和 28%。AcOr2 与 AmOr2 相似性为 80%,与 BtOr2 相似性为 73%,其中内含子区相似 性分别为 64% 和 63%。

2.2.2 编码区氨基酸序列分析 对 AcOr1、AcOr2 外显子区分别进行拼接、翻译得出, AcOr1、AcOr2 外显子区分别编码 226 和 228 个氨基酸。经 BLAST 搜索后,在结果中分别找出 6 条和 13 条与

其同源的膜翅目昆虫氨基酸序列(图4,5)。序列 比对结果表明,AcOr2与AmOr2相似性最高,达到 100%,与CsOr2相似性最低,为66%;AcOr1与 AmOr1,AmOr3的相似性分别为99%,81%,与 NvOr9仅有34%的相似性。

2.3 聚类分析

根据 AcOr1、AcOr2 氨基酸同源性比对结果, 采用 Mega4.0 软件中的 NJ 法分别构建东方蜜蜂 与其它膜翅目昆虫气味受体系统进化树(图 6, 7)。从图 6 可以看出,东方蜜蜂 Or1 与西方蜜蜂 Or1 及 Or3 之间,丽蝇蛹集金小蜂 Or2 与 Or9 之间 亲缘关系较近。而 Or83b 受体家族聚类树(图 7) 能较好地反映昆虫间的进化关系,从图 6,7 中可 以看出,蜜蜂科昆虫与蚁科亲缘关系最近,而与茧 蜂科及小蜂总科亲缘关系相对较远。

AcOr! CAAGGAGGAC AACACGACTC AGATACCATT ECCTTATITE AGCGACTACE ITTECTEGT AATCGAGGAT TEGECGATTT ACGAGATGAC ITTEGTATTE CAAATATTEA TEAGCAGTAT [120] [120] AcOr/ TATTITETCT ACGAATTETE EGACTIACAE CITEATESEA TCTATAACEA TECACTETTE CEGETCTETTE EAGETTACCA ATAGAAAGAT CEAEGACECTT TECAAETEGEA ATAATCEGEA [240] AcOr1 TITECATEAT CETETTATE ACATCETTCA ATCTCATCTE ANAGCANTCE AETAAGTATA TATTAT-[360] 0-COT--TOT 368 .TT...TA.... [368] AcOr! STIGIACATA ATATTIGACT AARAAAAAGT AATTGTTAGT TAATGTTTAT TGGTTTAATA GAGTGATATA ATTIGCTCAT TGGCTGTTTG TTTAATTITA TGTAATAACA TTTTTTTAAA [480] 6001 AcOrl GTGATAGATT ATTT-GTCGA TTCGATTGGC TATTGATTTT TATAGTATAT GTTTTTATTT CGTGA----- -----[728] [720] [848] [840] AcOrl -19681 AMORI Amori Bior ctaggatete cacaggetta acaaaateat attettetat attetatate tatetatta atgettatae tatettere tacacgacca tacaacaaaa ttecactita tetaaaaate 19681 AcOrl -[1080] [1080] TTATCAAGTE TTAGTTCCCA AGATTTATTC TTGCCGTTCT TGTATCTATA CGCGTCGGAA CAACACTTCA GTGTTGTTAT GCACCCTGCT TTCTGTTCGA CTAGTCAGCG CGGTTTCTCG [1288] 1288 AmOri RiOr ATECTITEGT CECTATCATC CATCATCECT ACCATCETCA AGETATTEGA TEGAAAATATT TETCEATAGE AATATEACCT CEACCATACA CETAETTAAT TTTCACATAA TATCTATTTA 12001 AcOrl -[1320] 1320 13201 AcOri ARARGETTEE TIECRECATE ATARATATETT TETTAGAATT TEETETAATE ATEETATAAE AAAAAT-AET ATTAGETTAA AAAAAT----A GARAAAAAGA A-AATAAATE AATAAATAAA [1448] [1448] AcOri ATTAAAAATA TITTAAGGAA TIGGAAGATC ATAAAACATT GAGCACAGTA ACGTATITIG TITTAATGAC GTCAATTITC GTAAATGTC TCATAATATC GTTTATTGGT GACCGTCTCA [1568] 1566 [1560] AcOrt terenent acreance catetticat accategiac entitican eccaneter ananatata argacante tactagee castegaca teracter terester (1988) AcOr! GATATTAGAT CTITCTCTTC AAGCATTITG CGATGTAAAAT CTTAATATAT ATGTTATTA ATTITTCATT TATTGTTGTA AAAAT-------GAAAA AA----TTATT GTAGGTTTGC [1920] AcOrt AAAACTTCGG CAGCCTAC [1938]

图 2 AcOrl 核苷酸序列与其它昆虫相应序列的比对

Fig. 2 Nucleotide sequences alignment of AcOr1 with that of other insects

——代表相同的碱基; - - - - 代表缺少的碱基;下划线部分是外显子区。

-represent the same base; - - - represent the missing base; sequences above the underline are exon.

AcOr1: Apis cerana Or1 (JN544932); AmOr1: Apis mellifera Or1 (NC_007071.2);

BtOr: Bombus terrestris Or82a-like (NC_015763.1).

3 讨论

昆虫的气味受体和味觉受体在氨基酸序列上 是高度分化的,基因的重复和缺失,以及在特定神 经元中的低表达特点,使得对它们的鉴定高度地 依赖基因组测序工作(Clyne *et al.*,1999; Vosshall and Stocker,2007)。目前已有10余种昆虫的气 味受体得到了全面的鉴定,这为它们近缘种昆虫 相应受体的鉴定奠定了基础。本试验试图以东方 蜜蜂的近缘种西方蜜蜂气味受体 Orl 及 Or2 序列 为参照,在外显子区设计引物对东方蜜蜂相应基 因的 DNA 序列进行扩增,结果发现,东、西方蜜蜂 两气味受体在序列长度上存在较大差异,东方蜜 蜂与西方蜜蜂 Orl DNA 长度分别为 1 247 bp、 1 286 bp, Or2DNA 长度分别为 1 138 bp、1 833 bp。 西方蜜蜂两气味受体的基因组长度均长于东方蜜 蜂的基因组长度。

从生物进化的角度来看,内含子的进化速率 很快,保守程度远低于外显子,对内含子序列的比 较研究,可以为我们研究近缘种的进化提供线索。 从试验结果可以看出,同属的东方蜜蜂和西方蜜 蜂气味受体基因 Orl、Or2 的外显子区同源性能达

Acor2 TEACCATECT STITTEACE CACAGEGIES TEAAGETEST TTATTICEGE STEAGEAGTA AATTETTETA CAGAAGEGIT GECATATEGA ACAATECGAA CAGECTES TEATEGEA [120] 1281 [120] AcOr2 AGAGCAACGC GCGATACCAT CAGATAGCCG TTAAGAAGAT GAGGATACTC CTGCTGGCGG TTATAGGGAC CACGGTGCTG TCCGCCATTT CTTGGACCAC CATCACCTTC ATTGGCGACT [248] 248 [240] AcOr2 CIGIGGOGOGO GETCOTEGOT ECTETENCIA ACCONCENCE CTACETEGOG ETENTETEGAT INT-TITICT CATT-3681 [368] AcOr2 - CCTC--TT ACTCTTCTTT -4891 [480] [480] AcOr2 - CACGCCGAT- --ATTTATTC --C CTTATT--AA AAT-688 AND/2 TAAAAAAAATT TACTCATTAC A.TTATAATAA TAAAAAATTATA TAAAAATTATA TAAAATTATA TAAAATTAC TATAATTAC TCATTACAAT TATAATAATA TTTTTATAAT Bior2 Taaaaaaaatt getatagtaa .gtt.t.ga- --...t.. aacgategtt tgetttege. t.gea-----....gata-----...gata--------[600] AcOr2 --CGTA--- TAAATAA - TAACAGAATA TATTAATT-ATATC AATITATCGT CCCATTATTT AA T TOTTTO [780] 788 [788] BtOr2 -. 6.... ---- G ATTTAATTTT CTTCAATTCG CGAGTGT-GA TTA-ACAAAG AAA AcOr2 ATTATTA ATC-GATTATTT-[988] 988 RIOr2 1988 AcOr2 ARATTA TTT AACGAACAA 1828 RiOr2 -TE 18281 AcOr2 TIGATEGAGA DESCECTITI TIGATEGATA ACCAGESTIC ATERTICATI CETECTACE TACCACEGAGA TESCECTAT TIGATEGATE ATATECCAT TIGATEGAT [1148] 1148 [1148] AcOr2 GATATICIGC ATGGCAGAGE CGAATCTGCT GGACGTGTTE TICTGCTCCT GGCTGCTGTT CGCTTGCGGG CAGATCCAGCA ATCTGAAGAA CATCATGAAG CCTTTGATGG AGTTCAGCGC [1268] 261 [1260] AcOr2 CACGCTGGAC ACCGTCGTGC CARACAGTGG AGAACTGTTC AAGGTTAAGC TCTAC-----GTATTT CT----ATCTAA AG-AAAAAT-113801 [1380] AcOr? -TCCC AAA--GAAAA GAAATCTCAA GTTAATATCT AATAA--TAA T-AATARCGA TAA--ATAAA A -0000 15881 [1500] T T AcOr2 ATCTAVAAAA TTTAGAAAAA AAAA--GGGA GAAA--6 66666676---CCAACACAG--696966-AGATGATCAT TITTAATITG 16281 [1628] --CT TCTT---GTTC AGGCTGGCAG TGCAGAGCAA CCGAAGGAAC AGGAGCCATT GCCACCAGTC [1748] 400+2 C-Or2TATAGAAAAA GAGAAAAATC TAAAAAATAAA ATTGAGGATG AAAAAAAAAGA GAGATTTGTC ..C.TTA......... ----TTGT. ..C.--A...A...GGA..T. .T..C....C. A.....AC. 17401 BtOr2 .AT-AcOr2 ACTOCACCT- --CAGGETEA AAACATETTE EACATEGATE TTCEAGEGEAT ATACAGEAAC AEGACCGAET TCACGACCAE CTTCEGECCA ACTECT [1836]

图 3 AcOr2 核苷酸序列与其它昆虫相应序列的比对

Fig. 3 Nucleotide sequences alignment of AcOr2 with that of other insects

----代表相同的碱基; - - - - 代表缺少的碱基;下划线部分是外显子区。

---- represent the same base; - - - - represent the missing base; sequences above the underline are exon.

AcOr2: Apis cerana Or2 (JN544931); AmOr2: Apis mellifera Or2 (NC_007070);

BtOr2: Bombus terrestris Or2 (NW_003566036).

到99%以上,而内含子区同源性较低,仅为71% 和64%,这与王妮娜(2008)研究的2个榕小蜂近 缘种 Or83b-like 基因同源性的结果相似。从核苷 酸序列比对图可以看出,AcOr1、AcOr2 与西方蜜 蜂和熊蜂相应基因在序列长度上存在较大差异, 而这种差异绝大部分存在于内含子中,且亲缘关 系的远近与内含子的差异存在相关关系,亲缘关 系越远,内含子的差异就越大。

氨基酸序列比对结果显示,AcOr2 与其它膜翅 目昆虫 Or83b 类基因具有较高的同源性,证明 AcOr2 属于 Or83b 家族。另外,经比对搜索可以看 出,Or83b 受体家族与其它气味受体间没有同源 性,而传统气味受体间却可能存在同源现象,如 AmOr1与AmOr3之间,NvOr2与NvOr9之间有相 似区域,且从其基因定位图中可以看到,这些基因 均位于同一染色体上,表明这些气味受体可能是 由同一基因分化而来的。

参考文献(References)

Benton R, Sachse S, Michnick SW, Vosshall LB, 2006. A typical membrane topology and heteromeric function of *Drosophila* odorant receptors in vivo. *PloS Biol.*, 4 (2): 240-257.

Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson

AcOr1	KEDNTTQIPL	PYLSDYVFFV	IEDSPIYEMT	FVLQIFISSI	ILSTNCGTYS	LIASITMHCC	GLFEVTNRKI	ETLCKWNNRD
AmOr1								K
BtOr82a-like	.A	T	V.NI.		I		S.R.	HKC.
BiOr82a-like	· A	IT	V.NI.		I		S.R.	HKC.
AmOr3	.AS		TI.	V.M.T.FL	.M.L.Y.I		R.	IL
NvOr2	RSM	P.EI	VLIV	TL	T.V	CVV	CSNRA	.K.LRGMKY.
NvOr9	MRG.VSLR	A.P.YFN	PQIRWDYV	THCMCGLV	RY.VTV	IAILCII.	SQITI.SSML	DR.VENFDNM
AcOr1	LHD	RVIDIVQSHL	KAIEYSARVG	ESLSIVFLSE	MLGCTIIICF	LEFGVIMELE	DHKTLSTVTY	FVLMTSIFVN
AmOr1								
BtOr82a-like		v	EGLI.	K	.v		L	
BiOr82a-like		v	EGLI.	K	.v	W.	L	
AmOr3	RG	.IAI	L	K		v.w.	F.M	VM
NvOr2	KSKISPE.GK	KLSELIDF.V	Q.AETME	NA.NM	.G	Y.ILQD	.REY.GM	IM
NvOr9		LLGKTQ	RFLKFASKLE	DLFNQIC.V.	vs.c	.GYYL.T.Y.	QREPIA	.L.LC.FVF.
AcOrl	VFIISFIGDR	LKQESERIRE	TSYFIPWYDF	PTE-VAKNIK	TIILRASRPS	SLSGAKILDL	SLOAFCDVCK	TSAA
AmOrl						E.		
BtOr82a-like		G.	L	.VDN	MT.L	C		
BiOr82a-like		G.	L	.VDN	MTRL	CNEI		
AmOr3	L	GQ	E.	IR	I	M	RVF.	
NvOr2	L. YVK	V.EQA.GF	SA.SMQ.V.L	.N.FIM.DL.	FVMANQ.T	R. TAG. LF	GA.	M.
NvOr9	ILCYEI	.TEQC.S.GT	.A.M.RHL	SGK-E.R.VV	LASTQV	VMTAG. MVN.	S.TN.I.	AS

图 4 AcOr1 氨基酸序列与其它膜翅目昆虫相应序列比对图

Fig. 4 Amino acid sequences alignment of AcOr1 with that of other insects in Hymenoptera

——代表相同的氨基酸。

----- resperant same amino acid.

AcOr1: Apis cerana (Or1 JN544932); AmOr1: Apis mellifera (OR1 XP_001121080); Bt Or82a-like: Bombus terrestris (XP_003393987); Bi Or82a-like: Or82a-like Bombus impatiens (XP_003484569); AmOr3: Apis mellifera Or3 (XP_003250769); NvOr2: Nasonia vitripennis Or2 (NP_001177429); NvOr9: Nasonia vitripennis Or9 (NP_001177435).

JR, 1999. A novel family of divergent seven-tran smembrane proteins: candidate odorant receptors in *Drosophila. Neuron*, 22 (2) :327-338.

- Field LM, Pickett JA, Wadhams LJ, 2009. Molecular studies in insect olfaction. *Insect Mol. Biol.*, 9 (6):545-551.
- Hallem EA, Dahanukar A, Carlson JR, 2006. Insect odor and taste receptors. Annu. Rev. Entomol., 51:113-135.
- Krieger J, Klink O, Mohl C, Raming K, Breer H, 2003. A candidate olfactory receptor subtype highly conserved across different insect orders. J. Comp. Physiol. A, 189 (7): 519-526.
- Larsson MC, Dominguos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB, 2004. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron, 43 (5) :703-714.
- Marshall B, Warr CG, Bruyne M, 2010. Detection of volatile indicators of illicit substances by the olfactory receptors of *Drosophila melanogaster. Chem. Senses*, 35:613-625.
- Nichols AS, Chen S, Luetje CW, 2011. Subunit Contributions to insect olfactory receptor function: Channel block and odorant recognition. *Chem. Senses*, 36 (9): 781-790.
- Nichols AS, Luetje CW, 2010. Transmembrane segment 3 of

Drosophila melanogaster odorant receptor subunit 85b contributes to ligand-receptor interactions. J. Biol. Chem., 16 (285) :11854—11862.

- Patch HM, Velarde RA, Walden KK, Robertson HM, 2009. A candidate pheromone receptor and two odorant receptors of the hawkmoth *Manduca sexta*. *Chem. Senses*, 34 (4): 305-316.
- Robertson HM, Gadau J, Wanner KW, 2010. The insect chemoreceptor superfamily of the parasitoid jewel wasp Nasonia vitripennis. Insect Mol. Biol., 19 (Suppl. 1): 121-136.
- Robertson HM, Wanner KW, 2006. The chemoreceptor superfamily in the honeybee *Apis melifera*: expansion of the odorant, but not gustatory, receptor family. *Genome Res.*, 16 (11):1395—1403.
- Robertson HM, Warr CG, Carlson JR, 2003. Molecular evolution of the insect chemoreceptor superfamily in *Drosophila melanogaster*. *PNAS*, 100 (Suppl. 2) :14537— 14542.
- Sato K, Pellegrino M, Nakagawa T, Vosshall LB, Touhara K, 2008. Insect olfactory receptors are heteromeric ligandgated ion channels. *Nature*, 452 (7190) :1002-1006.
- Vosshall LB, Stocker RE, 2007. Molecular architecture of

TMLFFTHSVV KLVYFAVRSK LFYRTLGIWN NPNSHPLFAE SNARYHOIAV KKMRILLLAV IGTTVLSAIS WTTITFIGDS AcOr2 AmOr 2 BiOr7I.V....LA..M......S...... BtOr7 SiOr .I...L.TLI .I....A...A...A...S..L T.V.R..FC. GAA..ATT.. ...L..FE.P MmOr 1 AeOr7 .L....I. .V...I.. Y....WA...A..LL.FL. GV...T.VA ...L.FEHP NvOr1 CaOr2 CfOr7 PpOr2 HaOr7 AbOr2 Psor2 ACOT2 VKKVIDPVTN ETTYVEIPRL MVRSWYPYDP SHGMAHILTL IFQFYWLIFC MADANLLDVL FCSWLLFACE QIQHLKNIMK AmOr 2 BiOr7I.....L.....NAV.V.V. Btor7 SiOr MmOr 1 leOr7 NvOr1 CsOr2 CfOr7 PpOr2 HsOr7 AbOr2 Psor2 ACOT2 PLMEFSATLD TVVPNSGELF KAGSAEQPKE Q----EPLPP VTPPQ-GENM LDMDLRGIYS NRTDFTTTFR PT AmOr2 BiOr7 BtOr7 SiOr leOr7 CsOr2 HsOr7 AbOr2 Psor2

图 5 AcOr2 氨基酸序列与其它膜翅目昆虫相应序列比对图

Fig. 5 Amino acid sequences alignment of AcOr2 with that of other insects in Hymenoptera

---代表相同的氨基酸; - - - 代表缺少的氨基酸。

-----resperant the same amino acid; - - - resperant the missing amino acid.

AcOr2: Apis cerana Or2 (JN544931); AmOr2: Apis mellifera Or2 (NP_001128415); BiOr7: Bombus impatiens Or7 (XP_003494153); BtOr7: Bombus terrestris Or7 (XP_003402775); SiOr: Solenopsis invicta Or (EFZ15266); MmOr1: Microplitis mediator Or1 (ABM05966); AeOr7: Acromyrmex echinatior Or7 (EGI63650); NvOr1: Nasonia vitripennis Or1 (NP_001164465); CsOr2: Ceratosolen solmsi marchali Or2 (ABY51614); CfOr7: Camponotus floridanus Or7 (EFN70194); PpOr2 Philotrypesis pilosa Or2 (ABY51616); HsOr7: Harpegnathos saltator Or7 (EFN84180); AbOr2: Apocrypta bakeri Or2 (ABY51615); PsOr2: Philotrypesis sp. Or2 (ABY51617).

smell and taste in Drosophila. Annu. Rev. Neurosci., 30: 505-533.

- Wanner KW, Nichols AS, Walden KK, Brockmann A, Luetje CW, 2007. A honeybee odorant receptor for the queen substance 9-oxo-2-decenoic acid. *PNAS*, 104 (36): 14383—14388.
- Weinstock GM, Robinson GE, Gibbs RA, Worley KC, Evans JD, Maleszka R, 2006. Insights into social insects from the

genome of the honeybee Apis mellifera. Nature, 443 (7114):931-949.

- Wicher D, Schfer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS, 2008. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotideactivated cation channels. Nature, 452 (7190):1007-1011.
- Wistrand M, Kall L, Sonnhammer EL, 2006. A general

model of G protein-coupled receptor sequences and its application to detect remote homologs. *Protein Sci.*, 15 (3):509-521.

- 曾志将,2002. 养蜂学. 北京:中国农业出版社.12.
- 王妮娜, 2008. 昆虫嗅觉受体 Or83b-like 基因内含子的进 化研究. 硕士学位论文. 泰安:山东农业大学.
- 杨冠煌,2001.中华蜜蜂.北京:中国农业科技出版社.1-281.
- 张帅,张永军,苏宏华,高希武,郭予元,2009. 棉铃虫气 味受体的克隆与组织特异性表达. 昆虫学报,52(7):728-735.

Fig. 7 Phylogenetic tree of AcOr2 with its homology genes of other insects