沙棘木蠹蛾生殖系统形态学和组织学观察

周 娇1*** 李 娟² 翁 强² 骆有庆¹***

(1. 北京林业大学省部共建森林培育与保护重点实验室 北京 100083;2. 北京林业大学生物科学与技术学院动物生理学科 北京 100083)

摘 要 沙棘木蠹蛾 Holcocerus hippophaecolus Hua, Chou, Fang et Chen 属鳞翅目(Lepidoptera)木蠹蛾科(Cossidae),是我国的特有种。2001 年以来,沙棘木蠹蛾在我国大面积爆发,是屹今为止我国沙棘林最大的蛀干害虫,给我国的沙棘产业造成了巨大的损失。本论文从形态学和组织学2个方面确定了沙棘木蠹蛾雌、雄生殖系统的特征,同时,对比了雄性交尾前后生殖系统各部位的差异。未交尾雄蛾的生殖系统贮精囊、附腺管和射精管呈白色,其内包含大量的精子束待交尾,已交尾雄蛾的生殖系统呈透明或半透明状。除雄性附腺外,在交尾后的精巢、贮精囊和射精管中都能观察到真核精子束。通过上述对雄性生殖系统的形态学和组织学观察,尤其是对贮精囊和射精管中都能观察到真核精子束。通过上述对雄性生殖系统的形态学和组织学观察,尤其是对贮精

Morphological and histological observations on the reproductive system of *Holcocerus hippophaecolus*

ZHOU Jiao^{1**} LI Juan² WENG Qiang² LUO You-Qing^{1***}

 The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China; 2. College of Biological Science and Technology, Department of Animal Physiology, Beijing Forestry University, Beijing 100083, China)

Abstract *Holcocerus hippophaecolus* Hua, Chou, Fang *et* Chen (Lepidoptera, Cossidae) is endemic to China and a serious pest of seabuckthorn forest that has caused tremendous losses. Large-scale outbreaks of this pest have been reported since 2001. This paper describes morphological and histological characteristics of the male and female reproductive system of *H. hipophaecolus* and differences in the male reproductive system before and after mating. In unmated males, the seminal vesicles, accessory glands and ejaculatory ducts are white and contain a large number of sperm bundles. However, in males that have mated, the reproductive system is transparent and translucent. Sperm bundles can be observed in the testis, seminal vesicles and ejaculatory ducts in addition to the accessory glands. This observation, and especially the distribution of sperm bundles, can be used to distinguish between mated and unmated males. The ability to distinguish these is useful for evaluating the efficiency of sex pheromone traps. **Key words** *Holcocerus hippophaecolus*, male reproductive system, histological observation

沙棘木蠹蛾 Holcocerus hippophaecolus Hua, Chou, Fang et Chen 属鳞翅目 Lepidoptera 木蠹蛾 科 Cossidae,是我国的特有种,至今国外尚未见有 关于其发生危害的报道。2001 年以来,沙棘木蠹 蛾在我国大面积爆发,是屹今为止我国沙棘林最 大的蛀干害虫,给我国的沙棘产业造成了巨大的 损失(宗世祥等,2006)。在辽宁,沙棘木蠹蛾为4 年1代,老熟幼虫5月上旬入土化蛹,成虫始见于

^{*} 资助项目:国家自然科学基金(30730075)。

^{**}E-mail: xjbjzhoujiao@163.com

^{***}通讯作者, E-mail: youqingluo@126.com

收稿日期:2011-08-14,接受日期:2011-09-28

5 月末,终见于9月初,期间还经历2次羽化高峰 期,分别为6月中旬和7月下旬。沙棘木蠹蛾主 要以幼虫危害沙棘的主干和根部。主干受害处挂 满了絮状的虫粪,常造成树木表皮干枯;受害根基 部周围多见有被推出地面的粪屑,树根大部分被 蛀空,导致整株枯死(路常宽等,2004)。

鳞翅目的生殖系统在不同的种类中有所差 异,生殖系统的差异也是系统发育的来源。鳞翅 目生殖系统的形态研究主要集中于天蛾科、袋蛾 科等,对木蠹蛾科少有报道(孙雅杰等,1991;李照 会等,1993;Tian et al.,2006),本论文的研究目的 是从形态学和组织学角度确定沙棘木蠹蛾雌、雄 生殖系统特征,为进一步深入研究沙棘木蠹蛾系 统发育学奠定基础;同时我们比较了交尾前后雄 性生殖系统各部分的组织学差异,初步确立了判 断雄蛾交尾与否的标准。

1 材料与方法

1.1 昆虫

沙棘木蠹蛾采集于辽宁省建平县。成虫由老 熟幼虫人工饲养获得。老熟幼虫于室温下饲养, 将大批老熟幼虫及新鲜沙棘根段放于整理箱中, 用沙土覆盖,湿度保持70%左右,用纱网将整理箱 覆盖,以保证透气。每2周翻看1次虫体,并将沙 土保湿,挑出结茧的虫体,区分雌、雄单独放置于 培养箱中饲养,温度30℃,湿度70%,光暗周期比 16:9,每2d检查1次化蛹结茧情况。已交配雄蛾 的获得:同一晚羽化的雌、雄蛾人为放入养虫笼 中,观察其交配,待雌、雄交配1次后,将雌、雄蛾 分开,6h后解剖雄蛾生殖系统,并固定至4%多聚 甲醛中,待实验。

1.2 形态学

取羽化或交尾的雌、雄蛾,放入毒瓶中一段时间后取出,用手术小剪刀剪去沙蒿木蠹蛾的头、胸部,去掉腹部鳞毛,沿腹背中央剪开表皮并将其固定在蜡盘上。加清水浸漫虫体,在双目立体解剖镜下,用镊子剔去脂肪体,再将气管、消化及神经系统剔除,便得完整的生殖系统,生殖系统整理有序后在显微镜下拍照。

1.3 组织学

将解剖出的生殖系统在 4% 多聚甲醛中固定 12 h 后,经水冲洗 70%、80%、90%、95%、100% 酒 精和二甲苯脱水后石蜡包埋,切成4~6μm厚的 切片,过夜烘干。经二甲苯、100%、99%、95%、 90%、80%、70%酒精脱蜡,经苏木精-伊红(HE)染 色后,经上行酒精和二甲苯脱水,以中性树胶封片 制成永久切片,用于组织学观察。

2 结果与分析

2.1 生殖系统的形态学观察

2.1.1 雌性生殖系统的形态学观察 沙棘木蠹 蛾雌性生殖系统位于雌蛾腹部 2~6 节之间,在背 血管下,周围包被神经节,卵巢左右各1个,每个 卵巢由4根卵小管组成,每管中有卵粒若干,左右 卵巢在端部合并为1个,侧输卵管左右2根,到腹 部第6节附近合并为1根中输卵管,与外生殖器 相通(图1:A)。侧输卵管及中输卵管皆为向外排 卵的通道。受精囊为膨大的肾形,与中输卵管相 通,是雌、雄个体交配后,精子在雌体内贮存的地 方,当卵经过通道向外排出时,由受精囊释放精子 使卵受精。受精囊末端是很长的附性腺,缠绕在 一起。附性腺通常分泌一种粘性物质,当雌虫产 卵时,可使卵粘在他物上或结成块或做成卵囊。 交配囊是鳞翅目昆虫特有的器官,位于中输卵管 和阴道的交界处,沙棘木蠹蛾的交配囊呈长圆柱 状,为交配时接受阳茎的地方,精子即泄入其中, 而后再流入受精囊。

2.1.2 雄性生殖系统形态学观察 沙棘木蠹蛾 雄性生殖系统的位置与雌性相同,由一对精巢、一 对输精管、一对贮精囊、附腺和射精管5部分组成 (图1:B)。精巢产生精子;输精管为成熟精子流 向贮精囊的通道;射精管为精子向外排泄的通道; 附腺可分泌精液,保证精子达到受精囊前有足够 的营养和合适的环境,另有一些附腺能在交配时 产生化学和物理刺激,给雄虫的神经内分泌系统 一定的信息,促进交配行为的完成。如果蝇及地 中海粉螟等种类的附腺分泌物与精珠的形成有 关,精珠内包含精液和许多精子,交尾时雄虫将分 泌物排泄入雌虫的交尾囊或阴道中。

2.2 生殖系统的组织学观察

沙棘木蠹蛾的精巢中,精子二形——真核精 子和无核精子(图2:A,C)。真核精子与无核精子 都呈束状,真核精子顶端的核被染成紫色。精巢 由大量的延长的卵泡细胞组成了许多胞囊,胞囊 Bt 稻生态安全评价研究包括在生长期(大田阶段) 生态安全评价和转 Bt 稻产后生态安全评价。目 前对转 Bt 稻生长期生态安全评价主要包括了对 靶标害虫的影响(Tu et al., 2000;Ye et al., 2001; Khanna and Raina, 2002;李冬虎等, 2004)、对非靶 标害虫及天敌的影响(傅强等, 2003;焦晓国等, 2006)及对稻田节肢动物群落多样性的影响(刘志 诚等, 2003a, 2003b;刘雨芳和尤民生, 2004)。

作为水稻生产与销售中的一个重要环节——粮食储藏,少有对转 Bt 水稻稻米在储藏期评价的 报道。转基因稻谷在储藏过程中,对储藏期间的 非靶标害虫及其天敌,进而对整个储藏期生物群 落结构等有无影响;同一个转基因材料,是否会因 种植地区的差异,引起其造成对储藏期间害虫的 影响差异,这些均是转基因水稻进行商品化之前 必须明确的问题。

赤拟谷盗 Tribolium castaneum Herbst 属鞘翅 目拟步甲科,是储粮中一种重要的害虫,由于其世 代间隔短,繁殖能力强,易于饲养,适应能力强,很 少病害,饲料一般不霉变等特点(张劳,1989),使 得赤拟谷盗成为评价转 Bt 稻谷对非靶标节肢动 物长期效应和非预期效应的理想对象(Conner and Jacobs, 1999)。

本研究以来自湖北武穴、孝感、随州3个不同 地区的转 cry1Ab/cry1Ac、cry2A、cry1C 基因明恢 63 (分别命名为 TT51、T2A-1 和 T1C-19)为材料,研究 以其继代饲养赤拟谷盗对其发育历期等生命表参 数的影响,以及其体内毒蛋白的累积与否,以期能 为转基因水稻产后领域安全性评价以及转基因水 稻产后领域有害生物治理策略的制定提供依据。

1 材料与方法

1.1 供试材料

供试稻谷:来自湖北武穴、孝感、随州3个不同地区的转 cry1Ab/cry1Ac、cry2A、cry1C 基因明恢63(分别命名为TT51、T2A-4和T1C-19)和原始受体品种明恢63(简称MH63),由华中农业大学作物遗传改良国家重点实验室提供。

供试昆虫:赤拟谷盗,由华中农业大学城市有 害生物防治研究所提供,在室内用半碎小麦饲养 20代以上。

1.2.1 喂食方法

1.2.1.1 实验材料前处理 将所有供试稻谷去除杂质并暴晒3d,用密封性能好的容器常温储存备用。使用前调整含水量至13% ±1%。使用时,将稻谷粉碎并过40目筛,用于产卵实验的稻谷粉碎后过120目筛。

1.2.1.2 喂食方法 以半碎小麦饲养的赤拟谷 盗成虫为试虫接入过 120 目的各种稻谷中,产卵 12 h 后筛出成虫,以得到的卵为试验试虫第 1 代 卵开始试验,以同种谷粉进行饲养一直到羽化成 虫,到成虫大量羽化后,继续接入 120 目的同种稻 谷中产卵 12 h,开始第 2 代的饲养,以此类推在实 验室进行继代饲养 6 代。

1.2.2 赤拟谷盗生命表及生命参数的观察

1.2.2.1 卵期、卵孵化率的观察 取 24 h 内羽化的成虫随机配对。从相应稻谷粉中收集 12 h 内产的卵,放于培养皿中,将培养皿放入气候箱中以待孵化。每天 2 次检查卵的孵化情况,并移出新孵化的幼虫,记录卵期及卵的孵化率,每个重复 50 粒,每个处理重复 5 次。

1.2.2.2 幼虫期、化蛹率的观察 从相应稻谷粉的卵中收集 12 h 内龄期的幼虫,按照每瓶 30 头的密度将其转移到装有 10 g 相应稻谷粉的管中。每个处理重复 5 次。每天观察幼虫的发育情况,直至幼虫化蛹,化蛹后及时取出蛹。记录幼虫期、化蛹率。

1.2.2.3 蛹期、羽化率、雌雄比的观察 从相应 稻谷粉中收集 12 h内的蛹,每重复 30 头蛹,放入 指形管中,管中放入适量稻谷粉,每个处理重复 3 ~5次。每天观察蛹的发育情况,直至羽化,羽化 后的成虫及时取出。记录蛹期、羽化率,并于化蛹 后 2~3 d观察蛹的雌雄,记录雌雄比。

1.2.2.4 成虫产卵前期、产卵期、产卵量的观察

取 24 h 内羽化的成虫随机配对。将每对放在装 有 3 g 粉碎稻谷(过 120 目筛)的指形管中,每一处 理重复 30 次,每天过筛检查玻璃小瓶,直到产卵 开始为止。集中收集羽化配对后 10~20 d 内产的 卵,为产卵能力指标。记录产卵前期、产卵期、产 卵量。

1.2.3 杀虫蛋白含量的测定 选择孝感地区的 各种供试稻谷及饲养的赤拟谷盗进行杀虫蛋白的 测定。采用 Elisa 试剂盒进行测定,赤拟谷盗取每 代的老熟幼虫,测定前用面粉进行饲喂 24 h。

1.2 试验方法

利用 SAS 软件(SAS Institute,1990) 对数据进 行统计分析,采用 LSD 法进行多重比较,孵化率、 化蛹和羽化率方差分析前进行反正弦转换,各虫 态历期和生殖力进行对数转换。

2 结果与分析

2.1 不同地区转 Bt 基因稻谷继代饲喂赤拟谷盗 后对其生长发育的影响

通过一年多的时间,研究了来自3个不同地 区湖北武穴、湖北孝感、湖北随州的转 cry2A、cry1C 和转 cry1Ab/cry1Ac 基因水稻及各区的明恢 63 对 照水稻,在储藏期间,通过继代饲养仓储重要害虫 赤拟谷盗6代,对赤拟谷盗产卵前期、产卵量、卵 期、卵孵化率、幼虫期、幼虫死亡率、化蛹率、蛹期、 蛹重、羽化率等各虫态历期及生命表参数的影响 的研究见表1~3,从表1~3中可以看出,用转基 因水稻和非转基因对照水稻饲养的各种处理,赤 拟谷盗各个生长发育指标为:卵期3~4 d,卵孵化 率85%~100%,幼虫期22~27 d,化蛹率85%~ 97%,蛹期6~7 d,百蛹重0.25~0.31 g,性比0.8 ~1.4,羽化率82%~97%,产卵前期5~7 d,各参 数同一世代不同地区之间以及同一地区不同世代 之间均没有极显著差异。初步得出结论,转 cry2A、cry1C和转 cry1Ab/cry1Ac基因水稻在储藏 期间,在6代的饲养过程中,对赤拟谷盗的各发育 历期及生命表参数没有明显的影响,各个指标的 变化均未达到极显著差异水平。

表 1 转 cry2A 基因稻谷水稻对赤拟谷盗部分生命表参数的影响 Table 1 Influence of transgenic cry2A rice on life table parameters of *Tribolium casaneum* at different generations

	不同水稻	当世代 Genaration							
	Rice	1	2	3	4	5	6		
	武 T2A-I	4.0 ± 0.0 aA	3.5 ± 0.1 aA	3.6 ± 0.0 aA	3.7 ± 0.3aA	3.9 ± 0.2 aA	3.6 ± 0.1 aA		
	孝 T2A-I	3.7 ± 0.1 aA	$3.6 \pm 0.3 aA$	3.8 ± 0.0 aA	3.8 ± 0.2 aA	3.6 ± 0.1 aA	$3.7 \pm 0.1 \text{ aA}$		
卵期(d)	随 T2A-I	$3.9 \pm 0.1 \mathrm{aA}$	$3.7 \pm 0.2 aA$	$3.7 \pm 0.2 aA$	3.8 ± 0.2 aA	3.7 ± 0.1 aA	3.7 ± 0.1 aA		
Egg	武 MH63	$3.8 \pm 0.2 aA$	3.7 ± 0.1 aA	$3.7 \pm 0.1 aA$	$3.5 \pm 0.1 aA$	3.7 ± 0.0 aA	$3.6 \pm 0.1 \text{ aA}$		
	孝 MH63	3.6 ± 0.0 aA	3.9 ± 0.1 aA	3.7 ± 0.2 aA	$3.5 \pm 0.3 aA$	3.7 ± 0.1 aA	$3.7 \pm 0.1 \text{ aA}$		
	随 MH63	3.8 ± 0.1 aA	3.8 ± 0.0 aA	3.6 ± 0.2 aA	3.4 ± 0.3 aA	3.8 ± 0.1 aA	3.7 ± 0.1 aA		
	武 T2A-I	$22.9 \pm 0.0 \mathrm{aA}$	$24.2 \pm 0.4 \mathrm{aA}$	25.1 ± 1.3aA	25.1 ± 1.1 aA	$25.9 \pm 0.6 \mathrm{aA}$	25.5 ± 1.2 aA		
	孝 T2A-I	$25.5 \pm 1.2 aA$	$26.1\pm0.9\mathrm{aA}$	$25.0\pm0.0\mathrm{aA}$	26.3 ± 1.3aA	$24.9 \pm 0.3 \mathrm{aA}$	25.9 ± 1.7 aA		
幼虫期(d)	随 T2A-I	$25.9 \pm 0.4 \mathrm{aA}$	25.4 ± 1.4 aA	24.1 ± 1.5 aA	25.1 ± 1.3 aA	$24.8 \pm 2.2 \mathrm{aA}$	25.9 ± 1.6 aA		
Larvae	武 MH63	23.7 ± 1.1aA	$24.0\pm0.7\mathrm{aA}$	$25.8 \pm 0.9 aA$	$24.8 \pm 0.9 \mathrm{aA}$	$24.7 \pm 0.9 \mathrm{aA}$	26.0 ± 1.4 aA		
	孝 MH63	25.3 ± 0.9aA	$25.5 \pm 0.2 aA$	$25.0 \pm 0.5 \mathrm{aA}$	25.6 ± 1.6aA	25.0 ± 1.9 aA	24.8 ± 0.5 aA		
	随 MH63	26.7 ± 1.8aA	24.7 ± 1.9aA	$24.0 \pm 1.5 aA$	$26.4 \pm 2.7 aA$	$25.6 \pm 0.2 \mathrm{aA}$	25.6 ± 1.4 aA		
	武 T2A-I	6.1 ±0.1aA	6.7 ± 0.0 aA	6.1 ± 0.1 aA	6.4 ± 0.0 aA	6.1 ± 0.1aA	6.3 ± 0.2 aA		
	孝 T2A-I	6.4 ± 0.1 aA	6.7 ± 0.1 aA	$6.0 \pm 0.1 aA$	6.2 ± 0.1 aA	$6.0\pm0.2\mathrm{aA}$	$6.3 \pm 0.5 \text{ aA}$		
蛹期(d)	随 T2A-I	$6.7\pm0.0\mathrm{aA}$	6.7 ± 0.1 aA	$6.3 \pm 0.0 \mathrm{aA}$	6.3 ± 0.0 aA	6.4 ± 0.1 aA	$6.4 \pm 0.1 \text{ aA}$		
Pupae	武 MH63	$6.3 \pm 0.1 aA$	6.7 ± 0.1 aA	$6.4 \pm 0.1 aA$	6.4 ±0.1aA	6.3 ± 0.1 aA	6.5 ± 0.2 aA		
	孝 MH63	$6.2 \pm 0.1 aA$	$6.8 \pm 0.0 \mathrm{aA}$	6.3 ± 0.0 aA	$6.4 \pm 0.1 aA$	6.1 ± 0.2 aA	$6.5 \pm 0.1 \text{ aA}$		
	随 MH63	6.6 ± 0.2 aA	6.7 ± 0.1 aA	$6.3 \pm 0.1 aA$	6.1 ± 0.3aA	6.5 ± 0.1 aA	6.5 ± 0.2 aA		
	武 T2A-I	5.9 ± 0.2 aA	6.4 ± 0.1 aA	6.1 ± 0.1 aA	$6.7 \pm 0.3 \mathrm{aA}$	6.3 ± 0.2 aA	$6.7 \pm 0.3 \text{ aA}$		
	孝 T2A-I	6.2 ± 0.2 aA	$6.6 \pm 0.2 aA$	$6.7 \pm 0.3 aA$	6.7 ±0.1aA	6.2 ± 0.2 aA	6.6 ± 0.2 aA		
产卵前期(d)	随 T2A-I	6.1 ± 0.2 aA	7.0 ± 0.2 aA	$6.7 \pm 0.2 a A$	$6.5 \pm 0.1 aA$	$6.6\pm0.20\mathrm{aA}$	$6.1 \pm 0.2 \text{ aA}$		
Preoviposition	武 MH63	5.6 ± 0.1 aA	$6.8 \pm 0.2 aA$	6.2 ± 0.2 aA	6.2 ± 0.2 aA	$6.2 \pm 0.1 aA$	6.4 ± 0.2 aA		
	孝 MH63	6.1 ±0.1aA	$6.7 \pm 0.2 aA$	6.2 ± 0.2 aA	$6.5 \pm 0.1 aA$	6.1 ± 0.2 aA	$6.3 \pm 0.3 \text{ aA}$		
	随 MH63	$6.2 \pm 0.3 \mathrm{aA}$	$6.7 \pm 0.2 aA$	6.6 ± 0.4 aA	$6.5 \pm 0.1 aA$	$6.6\pm0.4\mathrm{aA}$	6.4 ± 0.2 aA		
	武 T2A-I	93.3 ± 1.9aA	98.7 ± 1.3aA	$100.0\pm0.0\mathrm{aA}$	91.4 ± 2.9aA	90.0 ± 5.8 aA	98.7 ± 1.3 aA		
	孝 T2A-I	95.6 ± 2.9aA	94.4 ± 1.1aA	$91.3 \pm 8.7 aA$	95.6 ± 4.4aA	$93.3 \pm 3.8 \mathrm{aA}$	96.7 ± 1.9 aA		
卵孵化率(%)	随 T2A-I	96.7 ± 1.9aA	92.2 ± 1.1 aA	93.8 ± 6.2aA	92.7 ± 3.8aA	94.4 ± 2.7 aA	94.4 ± 2.9 aA		

							续表1			
	不同水稻	世代 Genaration								
	Rice	1	2	3	4	5	6			
Hatchability	武 MH63	94.4 ± 1.1aA	95.6 ± 2.9aA	$100.0\pm0.0\mathrm{aA}$	88.7 ± 1.0aA	97.8 ± 2.2 aA	88.7 ± 2.9 aA			
	孝 MH63	95.6 ± 1.1aA	96.7 ± 1.9aA	90.0 ± 10.0 aA	$92.2 \pm 4.4 aA$	96.7 ± 3.3aA	98.9 ± 1.1 aA			
	随 MH63	95.6 ± 1.1aA	96.7 ± 1.9aA	$91.7 \pm 8.3 aA$	90.0 ± 1.9 aA	$93.3 \pm 3.6 aA$	91.1 ± 4.0 aA			
	武 T2A-I	95.6 ± 1.1aA	94.2 ± 1.6aA	89.7 ± 3.2aA	90.7 ± 3.2aA	93.9 ± 1.4aA	88.7 ± 5.9 aA			
	孝 T2A-I	92.2 ± 1.1aA	90.0 ± 1.9 aA	81.7 ± 5.0 aA	91.1 ± 1.1aA	96.0 \pm 4.0aA	92.5 \pm 4.5 aA			
化蛹率(%)	随 T2A-I	91.1 ± 1.1aA	$90.0 \pm 1.9 \mathrm{aA}$	91.1 ± 1.1aA	$91.0 \pm 1.9 \mathrm{aA}$	$97.6 \pm 2.4 \mathrm{aA}$	$88.7 \pm 4.7~\mathrm{aA}$			
Pupation rate	武 MH63	$95.6 \pm 2.9 aA$	93.3 ± 1.4 aA	$90.0 \pm 5.1 aA$	$90.0 \pm 5.1 \mathrm{aA}$	$95.0 \pm 3.3 \mathrm{aA}$	88.4 ± 6.9 aA			
	孝 MH63	94.4 \pm 2.9aA	93.3 ± 1.9 aA	$85.6 \pm 4.4 aA$	$90.0 \pm 1.9 \mathrm{aA}$	$89.4 \pm 4.4 aA$	91.8 ± 3.1 aA			
	随 MH63	93.3 ± 1.9aA	90.0 ± 1.9 aA	90.0 ± 1.9 aA	91.0 ± 1.9 aA	$88.4 \pm 8.3 aA$	$82.9 \pm 8.6 \text{ aA}$			
	≓ } ТОА 1	0.3052 ±	0.3008 ±	0.2847 ±	0.2806 ±	0.2888 ±	0.2932 ±			
	武 IZAH	0.0033aA	0.025 4aA	0.0135aA	0.0098aA	0.0100aA	0.0128 aA			
	学 T2 A 1	$0.2858 \pm$	$0.2989 \pm$	$0.2789 \pm$	$0.2615 \pm$	$0.2847 \pm$	$0.2976 \pm$			
百蛹重(g)	李 12A-1	0.0053aA	0.0218aA	0.0081aA	0.0021aA	0.0054aA	0.0146 aA			
	防 T2A 1	$0.2763 \pm$	$0.2742 \pm$	$0.2789 \pm$	$0.2542 \pm$	$0.2776 \pm$	$0.2815 \pm$			
Pupal weight	随 12A-1	0.0021aA	0.0125aA	0.0081aA	0.0084aA	0.0037aA	0.0065 aA			
	寺 M1162	$0.2999~\pm$	$0.2732 \pm$	$0.2742 \pm$	$0.2982 \pm$	0.2983 \pm	$0.2747 \pm$			
	щ мпоз	0.0045 aA	0.0090aA	0.0131aA	0.0101aA	0.0017aA	0.0093 aA			
	孝 MII6 2	$0.3017 \pm$	$0.3171 \pm$	$0.2819 \pm$	$0.2727 \pm$	$0.2842 \pm$	$0.3078~\pm$			
	李 MH03	0.0057aA	0.0201 aA	0.0142aA	0.0133aA	0.0103aA	0.0193 aA			
	医 M1142	$0.2800 \pm$	0.2900 \pm	$0.2819 \pm$	$0.2853 \pm$	$0.2765 \pm$	$0.2852 \pm$			
	随 MH03	0.0076aA	0.0100aA	0.0142aA	0.0125aA	0.0066aA	0.0086 aA			
	武 T2A-I	$1.20\pm0.2\mathrm{aA}$	$0.92 \pm 0.18 \mathrm{aA}$	1.22 ± 0.12 aA	1.12 ± 0.22 aA	1.12 ± 0.10 aA	1.13 ±0.11 a A			
雌雄比	孝 T2A-I	$1.10 \pm 0.1 aA$	$0.97\pm 0.36\mathrm{aA}$	1.13 ± 0.13 aA	$0.94\pm 0.17\mathrm{aA}$	$1.10\pm 0.05\mathrm{aA}$	1.18 ± 0.19 a A			
(♀:♂)	随 T2A-I	1.10 ± 0.2 aA	$0.68 \pm 0.09 \mathrm{aA}$	$0.84 \pm 0.17 \mathrm{aA}$	$0.88 \pm 0.09 \mathrm{aA}$	$0.96 \pm 0.13 \mathrm{aA}$	0.84 ± 0.12 a A			
Sex ratio	武 MH63	$1.20\pm0.2\mathrm{aA}$	$0.91 \pm 0.13 \mathrm{aA}$	$1.20 \pm 0.28 \mathrm{aA}$	1.21 ± 0.18 aA	1.19 ± 0.15 aA	1.05 ± 0.16 a A			
	孝 MH63	$1.00 \pm 0.1 \mathrm{aA}$	$0.80 \pm 0.06 \mathrm{aA}$	$0.91\pm 0.05\mathrm{aA}$	$0.97 \pm 0.11 \mathrm{aA}$	$0.97 \pm 0.06 \mathrm{aA}$	0.89 ± 0.03 a A			
	随 MH63	$1.30\pm0.2\mathrm{aA}$	1.14 ± 0.30 aA	$0.87 \pm 0.21 \mathrm{aA}$	1.14 ± 0.30 aA	$1.07 \pm 0.17 \mathrm{aA}$	$0.96 \pm 0.17 a$ A			
	武 T2A-I	$95.5 \pm 1.0 \mathrm{aA}$	$81.4 \pm 1.9 \mathrm{aA}$	$83.4 \pm 4.1 aA$	$91.0 \pm 5.1 \mathrm{aA}$	91.6 \pm 3.8aA	90.5 \pm 3.9 a A			
	孝 T2A-I	97.4 ± 1.3 aA	$86.4 \pm 7.1 \mathrm{aA}$	$94.0\pm6.0\mathrm{aA}$	$90.0\pm6.0\mathrm{aA}$	$88.4 \pm 3.3 aA$	89.9 ± 3.8 a A			
羽化率(%)	随 T2A-I	91.5 ± 5.4 aA	$90.7 \pm 5.4 \mathrm{aA}$	$87.1 \pm 8.4 \mathrm{aA}$	$94.0\pm6.0\mathrm{aA}$	$94.6 \pm 3.0 \mathrm{aA}$	$89.7\pm3.2~\mathrm{a~A}$			
Emergence rate	武 MH63	$91.9 \pm 4.1 aA$	$88.5 \pm 4.1 aA$	$86.3 \pm 5.8 \mathrm{aA}$	$85.6\pm3.1\mathrm{aA}$	$92.1\pm5.2\mathrm{aA}$	93.0 ± 4.4 a A			
	孝 MH63	85.4 ± 9.4 aA	$86.0 \pm 5.1 \mathrm{aA}$	$87.6 \pm 3.1 \mathrm{aA}$	$88.6 \pm 3.1 \mathrm{aA}$	$96.7 \pm 1.9 \mathrm{aA}$	88.9 ± 3.0 a A			
	随 MH63	$86.0 \pm 10.7 \mathrm{aA}$	81.7 ± 9.2 aA	$82.9 \pm 8.6 \mathrm{aA}$	88.6 ± 3.1aA	$87.2 \pm 6.1 aA$	82.3 ± 5.6 a A			
	武 T2A-I	$41.4 \pm 2.0 \mathrm{aA}$	$32.0\pm2.2\mathrm{aA}$	$25.9 \pm 1.8 \mathrm{aA}$	$31.6 \pm 1.4 \mathrm{aA}$	$37.2\pm2.0\mathrm{aA}$	37.9 ± 3.9 a A			
	孝 T2A-I	$32.0 \pm 2.3 \mathrm{aA}$	$26.7 \pm 2.0 \mathrm{aA}$	$34.6 \pm 1.4 \mathrm{aA}$	$27.7 \pm 2.0 \mathrm{aA}$	$33.8 \pm 2.8 \mathrm{aA}$	28.2 ± 2.9 a A			
生殖力(头)	随 T2A-I	$28.6 \pm 1.8 \mathrm{aA}$	$27.8 \pm 1.7 \mathrm{aA}$	$30.5 \pm 2.1 aA$	$26.9 \pm 1.8 \mathrm{aA}$	$44.0\pm3.5\mathrm{aA}$	35.8 ± 3.9 a A			
Fecundity	武 MH63	41.4 ± 1.9 aA	$31.0 \pm 1.3 \mathrm{aA}$	$27.7 \pm 1.8 \mathrm{aA}$	$29.0\pm2.3\mathrm{aA}$	$32.9 \pm 2.2 \mathrm{aA}$	32.1 ± 2.5 a A			
	孝 MH63	$36.4 \pm 2.8 \mathrm{aA}$	$29.3 \pm 2.1 aA$	$32.0\pm2.3\mathrm{aA}$	$29.3 \pm 2.1 aA$	$37.1 \pm 3.8 aA$	34.8 ± 3.8 a A			
	随 MH63	$26.9 \pm 3.1 aA$	$31.8 \pm 2.8 aA$	34.5 ± 1.9 aA	$28.7 \pm 1.8 \mathrm{aA}$	$33.7 \pm 3.5 aA$	33.7 ± 3.2 a A			

注:同列数据后标有不同小写字母表示同一世代不同地区参数之间的差异显著(P<0.05),不同大写字母表示同一地区不同世代参数之间的差异显著(P<0.01)。下表同。

Data followed by different small or capital letters in the same column indicate significantly different at the 0.05 or 0.01 level, respectively. The same below.

	不同水稻 世代 Genaration									
	Rice	1	2	3	4	5	6			
	武 T1C-19	3.8 ± 0.1 aA	3.8 ± 0.1 aA	3.7 ±0.1aA	$3.6 \pm 0.2 aA$	$3.9 \pm 0.1 aA$	3.7 ±0.0aA			
	孝 T1C-19	3.7 ±0.1aA	3.8 ±0.1aA	3.7 ±0.1aA	$3.6 \pm 0.2 aA$	$3.6 \pm 0.0 aA$	3.7 ±0.1aA			
卵期(d)	随 T1C-19	3.8 ±0.2aA	3.7±0.2 aa	3.7 ±0.1aA	$3.6 \pm 0.2 aA$	$3.9 \pm 0.1 aA$	3.7 ±0.1aA			
Egg	武 MH63	3.8 ±0.2aA	3.7 ± 0.1 aA	3.7 ±0.1aA	$3.5 \pm 0.1 aA$	$3.7 \pm 0.0 aA$	3.6 ±0.1aA			
00	孝 MH63	$3.6 \pm 0.0 aA$	3.9 ±0.1aA	$3.7 \pm 0.2 aA$	$3.5 \pm 0.3 aA$	$3.7 \pm 0.1 aA$	3.7 ±0.1aA			
	随 MH63	3.8 ±0.1aA	3.8 ± 0.0 aA	3.6 ± 0.2aA	$3.4 \pm 0.3 aA$	$3.8 \pm 0.1 aA$	3.7 ±0.1aA			
	武 T1C-19	3.8 ± 0.1 aA	3.8 ± 0.1 aA	3.7 ±0.1aA	3.6 ± 0.2aA	3.9 ± 0.1 aA	3.7 ±0.0aA			
	孝 T1C-19	3.7 ±0.1aA	3.8 ±0.1aA	3.7 ±0.1aA	3.6 ±0.2aA	3.6 ± 0.0 aA	3.7 ±0.1aA			
幼虫期(d)	随 T1C-19	3.8 ±0.2aA	3.7±0.2 aa	3.7 ±0.1aA	$3.6 \pm 0.2 aA$	$3.9 \pm 0.1 aA$	3.7 ±0.1aA			
Larvae	武 MH63	3.8 ±0.2aA	3.7 ±0.1aA	3.7 ±0.1aA	$3.5 \pm 0.1 aA$	$3.7 \pm 0.0 aA$	3.6 ±0.1aA			
	孝 MH63	$3.6 \pm 0.0 aA$	3.9 ±0.1aA	$3.7 \pm 0.2 aA$	$3.5 \pm 0.3 aA$	$3.7 \pm 0.1 aA$	3.7 ±0.1aA			
	随 MH63	3.8 ±0.1aA	$3.8 \pm 0.0 aA$	3.6 ± 0.2aA	$3.4 \pm 0.3 aA$	$3.8 \pm 0.1 aA$	3.7 ±0.1aA			
	武 T1C-19	6.3 ±0.1aA	6.7 ±0.1aA	6.0 ± 0.1 aA	6.5 ±0.1aA	$6.2 \pm 0.2 aA$	6.2 ±0.3aA			
	孝 T1C-19	6.2 ±0.3aA	6.9 ±0.2aA	6.2 ± 0.1 aA	6.4 ±0.1aA	$6.2 \pm 0.0 aA$	6.2 ±0.1aA			
蛹期(d)	随 T1C-19	6.2 ± 0.2aA	6.6 ± 0.1 aA	$6.5 \pm 0.0 aA$	$6.4 \pm 0.3 aA$	$6.4 \pm 0.1 \mathrm{aA}$	6.6 ±0.1aA			
Pupae	武 MH63	6.3 ±0.1aA	6.7 ±0.1aA	6.4 ±0.1aA	6.4 ±0.1aA	$6.3 \pm 0.1 aA$	6.5 ±0.2aA			
	孝 MH63	6.2 ±0.1aA	6.8 ± 0.0 aA	$6.3 \pm 0.0 aA$	6.4 ±0.1aA	$6.1 \pm 0.2 aA$	6.5 ±0.1aA			
	随 MH63	6.6 ± 0.2aA	6.7 ±0.1aA	6.3 ±0.1aA	6.1 ±0.3aA	6.5 ± 0.1 aA	6.5 ±0.2aA			
	武 T1C-19	5.5 ± 0.1 aA	$6.7 \pm 0.2 aA$	5.8 ± 0.1 aA	6.8 ± 0.3aA	6.1 ± 0.2aA	6.2 ±0.2aA			
	孝 T1C-19	5.8 ±0.1aA	$6.8 \pm 0.2 \mathrm{aA}$	6.1 ±0.2aA	6.6 ± 0.2 aA	6.6 ± 0.2 aA	6.2 ±0.2aA			
产卵前期(d)	随 T1C-19	5.9 ± 0.2 aA	6.8 ±0.1aA	6.0 ± 0.2 aA	6.6 ± 0.0 aA	6.0 ± 0.2 aA	6.2 ± 0.2 aA			
Preoviposition	武 MH63	$5.6 \pm 0.1 aA$	6.8 ± 0.2 aA	$6.2 \pm 0.2 aA$	6.2 ± 0.2 aA	$6.2 \pm 0.1 aA$	6.4 ± 0.2 aA			
	孝 MH63	6.1 ±0.1aA	$6.7 \pm 0.2 \mathrm{aA}$	$6.2 \pm 0.2 aA$	$6.5 \pm 0.1 aA$	$6.1 \pm 0.2 aA$	$6.3 \pm 0.3 aA$			
	随 MH63	6.2 ± 0.3 aA	$6.7 \pm 0.2 aA$	6.6 ± 0.4 aA	$6.5 \pm 0.1 \mathrm{aA}$	6.6 ± 0.4 aA	6.4 ± 0.2 aA			
	武 T1C-19	94.4 ± 2.9aA	93.3 ± 1.9aA	$87.5 \pm 12.5 aA$	92.1 ± 1.1 aA	92.5 ± 3.8aA	88.3 ± 6.7aA			
	孝 T1C-19	94.4 ± 1.1aA	96.7 ± 1.9aA	91.3 ± 8.7aA	93.2 ± 3.3aA	96.7 ± 1.9aA	90.9 ± 4.2aA			
卵孵化率(%)	随 T1C-19	93.3 ± 1.9aA	93.3 ± 1.9aA	90.8 ± 0.8aA	90.7 ± 2.5 aA	92.1 ± 1.6aA	92.8 ± 2.0aA			
Hatchability	武 MH63	94.4 ± 1.1aA	95.6 ± 2.9aA	$100.0\pm0.0\mathrm{aA}$	$88.7 \pm 1.0 \mathrm{aA}$	97.8 \pm 2.2 a A	88.7 ± 2.9aA			
	孝 MH63	95.6±1.1aA	96.7 ± 1.9aA	$90.0 \pm 10.0 \mathrm{aA}$	$92.2 \pm 4.4 aA$	96.7 ± 3.3aA	98.9 ± 1.1aA			
	随 MH63	95.6±1.1aA	96.7 ± 1.9aA	91.7 ± 8.3aA	$90.0 \pm 1.9 \mathrm{aA}$	$93.3 \pm 3.6 \mathrm{aA}$	91.1 ± 4.0aA			
	武 T1C-19	94.4 ± 2.9aA	91.1 ± 1.1aA	93.3 ± 5.1 aA	92.3 ± 5.1 aA	96.6 ± 1.9aA	93.0 ± 7.0aA			
	孝 T1C-19	$95.6 \pm 2.9 aA$	91.1 \pm 2.2aA	$90.0\pm0.0\mathrm{aA}$	$86.4 \pm 2.9 \mathrm{aA}$	$90.7 \pm 4.9 \mathrm{aA}$	$84.7 \pm 3.7 aA$			
化蛹率(%)	随 T1C-19	94.4 \pm 2.9aA	94.4 ± 1.1aA	$84.4 \pm 2.9 aA$	94.4 \pm 1.1 aA	$92.2 \pm 7.8 \mathrm{aA}$	$86.0 \pm 5.9 aA$			
Pupation rate	武 MH63	$95.6 \pm 2.9 aA$	93.3 ± 1.4 aA	90.0 ± 5.1 aA	$90.0 \pm 5.1 \mathrm{aA}$	$95.0 \pm 3.3 \mathrm{aA}$	$88.4 \pm 6.9 aA$			
	孝 MH63	94.4 \pm 2.9aA	93.3 ± 1.9 aA	$85.6 \pm 4.4 aA$	$90.0 \pm 1.9 \mathrm{aA}$	89.4 ± 4.4 aA	91.8 ± 3.1aA			
	随 MH63	93.3 ± 1.9aA	90.0 ± 1.9 aA	$90.0 \pm 1.9 \mathrm{aA}$	$91.0 \pm 1.9 \mathrm{aA}$	$88.4 \pm 8.3 \mathrm{aA}$	$82.9 \pm 8.6 aA$			
	录 T1C 10	0.3001 ±	0.2758 ±	0.2956 ±	0.2872 ±	0.2843 ±	0.2942 ±			
	武 111-19	0.0023aA	0.0201 aA	0.0031aA	0.0037aA	0.0113aA	0.0026aA			
	孝 〒10-10	$0.2867 \pm$	0.2916 ±	$0.2851 \pm$	$0.2832 \pm$	$0.2892 \pm$	$0.2878 \pm$			
	孝 111-19	0.0068aA	0.0085aA	0.0042aA	0.0113aA	0.0055aA	0.0055aA			
	0.	$0.2776 \pm$	0.2842 \pm	$0.2851 \pm$	$0.276 \pm$	0.2808 \pm	$0.2866 \pm$			
	四 116-19	0.0024aA	0.0080aA	0.0042aA	0.0151aA	0.0042aA	0.0043aA			

表 2 转 cry1C 基因稻谷水稻对赤拟谷盗部分生命表参数的影响

 Table 2
 Influence of transgenic cry1C rice on life table parameters of Tribolium casaneum at different generations

							(续表2)				
	不同水稻	世代 Genaration									
	Rice	1	2	3	4	5	6				
百蛹重(g)		0.2999 ±	0.2732 ±	0.2742 ±	0.2982 ±	0.2983 ±	0.2747 ±				
Pupal weight	武 MH63	0.0045 aA	0.0090aA	0.0131aA	0.0101aA	0.0017aA	0.0093aA				
	# MIKO	0.3017 ±	0.3171 ±	$0.2819 \pm$	$0.2727 \pm$	$0.2842 \pm$	$0.3078 \pm$				
	孝 MH63	0.0057aA	0.0201 aA	0.0142aA	0.0133aA	0.0103aA	0.0193aA				
	Nt MIKO	$0.2800 \pm$	$0.2900 \pm$	$0.2819 \pm$	$0.2853 \pm$	$0.2765 \pm$	$0.2852 \pm$				
	随 MH63	0.0076aA	0.0100aA	0.0142aA	0.0125aA	0.0066aA	0.0086aA				
	武 T1C-19	1.2 ± 0.3 aA	$1.10\pm0.02\mathrm{aA}$	$0.91 \pm 0.19 \mathrm{aA}$	$0.95 \pm 0.29 \mathrm{aA}$	$1.04\pm0.16\mathrm{aA}$	$1.00 \pm 0.09 \mathrm{aA}$				
	孝 T1C-19	1.2 ± 0.4 aA	$1.41 \pm 0.13 \mathrm{aA}$	$1.03 \pm 0.05 \mathrm{aA}$	$1.02 \pm 0.21 \mathrm{aA}$	1.12 ± 0.18 aA	$1.20 \pm 0.13 \mathrm{aA}$				
雌雄比	随 T1C-19	0.8 ± 0.1 aA	$0.72 \pm 0.11 \mathrm{aA}$	1.12 ± 0.21 aA	$0.92 \pm 0.11 \mathrm{aA}$	$0.96 \pm 0.13 \mathrm{aA}$	$0.99\pm 0.20\mathrm{aA}$				
(♀:♂)	武 MH63	1.2 ± 0.2 aA	$0.91 \pm 0.13 \mathrm{aA}$	$1.20\pm 0.28\mathrm{aA}$	$1.21\pm0.18\mathrm{aA}$	$1.19 \pm 0.15 aA$	1.05 ± 0.16 aA				
Sex ratio	孝 MH63	1.0 ± 0.1 aA	$0.80 \pm 0.06 \mathrm{aA}$	$0.91\pm0.05\mathrm{aA}$	$0.97 \pm 0.11 \mathrm{aA}$	$0.97\pm0.06\mathrm{aA}$	$0.89 \pm 0.03 \mathrm{aA}$				
	随 MH63	1.3 ± 0.2 aA	$1.14\pm0.30\mathrm{aA}$	$0.87 \pm 0.21 \mathrm{aA}$	$1.14\pm0.30\mathrm{aA}$	$1.07\pm0.17\mathrm{aA}$	$0.96 \pm 0.17 a$ A				
	武 T1C-19	87.7 ± 10.6aA	92.9 ± 7.1 aA	97.8 ± 2.2aA	92.8 ± 3.2aA	93.4 ± 2.4aA	$88.5 \pm 3.4 \mathrm{aA}$				
	孝 T1C-19	86.1 \pm 5.0aA	$91.1 \pm 4.5 aA$	$93.8 \pm 3.3 \mathrm{aA}$	$91.8 \pm 3.3 aA$	$86.3 \pm 4.9 \mathrm{aA}$	$87.4 \pm 2.9 aA$				
羽化率(%)	随 T1C-19	$81.5 \pm 9.6 aA$	$94.0 \pm 4.3 \mathrm{aA}$	$87.8\pm6.9\mathrm{aA}$	$91.8 \pm 3.3 aA$	$86.9\pm6.0\mathrm{aA}$	$90.0 \pm 3.7 \mathrm{aA}$				
Emergence rate	武 MH63	91.9 ± 4.1 aA	$88.5 \pm 4.1 aA$	$86.3 \pm 5.8 \mathrm{aA}$	$85.6 \pm 3.1 \mathrm{aA}$	92.1 ± 5.2aA	$93.0 \pm 4.4 aA$				
	孝 MH63	85.4 ± 9.4 aA	$86.0 \pm 5.1 \mathrm{aA}$	$87.6 \pm 3.1 \mathrm{aA}$	$88.6 \pm 3.1 \mathrm{aA}$	$96.7 \pm 1.9 \mathrm{aA}$	$88.9 \pm 3.0 \mathrm{aA}$				
	随 MH63	$86.0 \pm 10.7 \mathrm{aA}$	$81.7 \pm 9.2 \mathrm{aA}$	$82.9 \pm 8.6 \mathrm{aA}$	$88.6 \pm 3.1 \mathrm{aA}$	$87.2 \pm 6.1 aA$	$82.3 \pm 5.6 \mathrm{aA}$				
	武 T1C-19	42.3 ± 1.6aA	29.4 ± 1.6aA	27.8 ± 1.7aA	30.0 ± 1.5aA	$33.2 \pm 2.0 aA$	28.8 ± 2.0aA				
	孝 T1C-19	$34.6 \pm 1.9 aA$	$30.8 \pm 2.0 \mathrm{aA}$	$30.0 \pm 1.6 \mathrm{aA}$	$31.8 \pm 2.0 \mathrm{aA}$	$37.3 \pm 3.4 \mathrm{aA}$	$31.8 \pm 2.7 aA$				
生殖力(头)	随 T1C-19	$35.7 \pm 2.3 aA$	$30.4 \pm 1.8 \mathrm{aA}$	$30.1\pm2.0\mathrm{aA}$	$27.9 \pm 1.8 \mathrm{aA}$	$38.2\pm2.7\mathrm{aA}$	$39.2 \pm 4.5 \mathrm{aA}$				
Fecundity	武 MH63	41.4 ± 1.9 aA	$31.0 \pm 1.3 \mathrm{aA}$	$27.7 \pm 1.8 \mathrm{aA}$	$29.0\pm2.3\mathrm{aA}$	$32.9 \pm 2.2 \mathrm{aA}$	32.1 \pm 2.5 aA				
	孝 MH63	$36.4 \pm 2.8 aA$	29.3 \pm 2.1 aA	$32.0\pm2.3\mathrm{aA}$	29.3 \pm 2.1 aA	$37.1 \pm 3.8 \mathrm{aA}$	$34.8 \pm 3.8 \mathrm{aA}$				
	随 MH63	$26.9 \pm 3.1 aA$	$31.8 \pm 2.8 \mathrm{aA}$	$34.5 \pm 1.9 \mathrm{aA}$	$28.7 \pm 1.8 \mathrm{aA}$	$33.7 \pm 3.5 \mathrm{aA}$	$33.7 \pm 3.2aA$				

表 3 转 cry1Ab/cry1Ac 基因稻谷水稻对赤拟谷盗部分生命表参数的影响

Table 3	Influence of	transgenic	cry1Ab/cry.	Ac rice	on life t	table	parameters	of <i>Tribolium</i>	<i>casaneum</i> a	t different	generations
---------	--------------	------------	-------------	---------	-----------	-------	------------	---------------------	-------------------	-------------	-------------

	不同水稻	督世代 Genaration								
	Rice	1	2	3	4	5	6			
	武 TT51	$3.7 \pm 0.1 aA$	3.7 ± 0.1 aA	3.7 ± 0.0 aA	$3.6 \pm 0.2 aA$	3.8 ± 0.1 aA	3.8 ±0.1aA			
	孝 TT51	3.7 ± 0.1 aA	3.8 ± 0.1 aA	3.5 ± 0.1 aA	$3.7 \pm 0.2 aA$	3.7 ± 0.1 aA	$3.6 \pm 0.2 aA$			
卵期(d)	随 TT51	3.8 ± 0.1 aA	3.7 ± 0.1 aA	3.7 ± 0.0 aA	$3.7 \pm 0.2 aA$	$3.8 \pm 0.1 \mathrm{aA}$	3.6 ± 0.0 aA			
Egg	武 MH63	3.8 ± 0.2 aA	3.7 ± 0.1 aA	3.7 ± 0.1 aA	3.5 ± 0.1 aA	3.7 ± 0.0 aA	$3.6 \pm 0.1 aA$			
	孝 MH63	3.6 ± 0.0 aA	3.9 ± 0.1 aA	3.7 ± 0.2 aA	$3.5 \pm 0.3 aA$	3.7 ± 0.1 aA	$3.7 \pm 0.1 aA$			
	随 MH63	3.8 ± 0.1 aA	$3.8 \pm 0.0 \mathrm{aA}$	$3.6 \pm 0.2 aA$	3.4 ± 0.3 aA	$3.8 \pm 0.1 \mathrm{aA}$	3.7 ± 0.1 aA			
	武 TT51	22.6 \pm 0.5 aA	23.6 ± 0.2 aA	26.3 ± 1.1aA	$25.0\pm0.0\mathrm{aA}$	$25.6 \pm 1.6 \mathrm{aA}$	23.7 ± 0.3aA			
	孝 TT51	$23.5 \pm 0.2 \mathrm{aA}$	$25.9 \pm 1.7 \mathrm{aA}$	$25.2\pm0.5\mathrm{aA}$	$25.2\pm0.4\mathrm{aA}$	$25.3 \pm 0.3 \mathrm{aA}$	25.8 ± 1.0aA			
幼虫期(d)	随 TT51	$24.0\pm0.6\mathrm{aA}$	$23.8 \pm 0.6 \mathrm{aA}$	$26.4 \pm 2.7 \mathrm{aA}$	$25.3 \pm 1.7 \mathrm{aA}$	$27.5 \pm 1.6 \mathrm{aA}$	$23.5 \pm 0.7 \mathrm{aA}$			
Larvae	武 MH63	23.7 ± 1.1aA	$24.0\pm0.7\mathrm{aA}$	$25.8 \pm 0.9 \mathrm{aA}$	$24.8 \pm 0.9 \mathrm{aA}$	$24.7 \pm 0.9 \mathrm{aA}$	$26.0 \pm 1.4 aA$			
	孝 MH63	$25.3 \pm 0.9 \mathrm{aA}$	$25.5\pm0.2\mathrm{aA}$	$25.0\pm0.5\mathrm{aA}$	$25.6 \pm 1.6 \mathrm{aA}$	$25.0 \pm 1.9 \mathrm{aA}$	$24.8 \pm 0.5 aA$			
	随 MH63	$26.7 \pm 1.8 \mathrm{aA}$	$24.7 \pm 1.9 \mathrm{aA}$	$24.0 \pm 1.5 \mathrm{aA}$	$26.4 \pm 2.7 \mathrm{aA}$	$25.6\pm0.2\mathrm{aA}$	25.6 ± 1.4 aA			
	武 TT51	6.1 ±0.1aA	6.6 ± 0.0 aA	6.0 ± 0.2 aA	6.4 ±0.1aA	6.1 ±0.1aA	6.2 ±0.3aA			
	孝 TT51	$6.1\pm0.0\mathrm{aA}$	$6.9\pm0.0\mathrm{aA}$	$6.0 \pm 0.3 aA$	6.4 ± 0.1 aA	$6.2 \pm 0.2 aA$	6.1 ± 0.4 aA			

图 1 沙棘木蠹蛾雌、雄生殖系统形态图 Fig. 1 The form of reproductive system in *Holcocerus hippophaecolus* A. 雌性生殖系统; B. 雄性生殖系统; C. 交尾前贮精囊、射精管; D. 交尾后贮精囊、射精管。 A. female reproductive system; B. male reproductive system; C. seminal vesicle and ejaculatory duct of male before mating; D. seminal vesicle and ejaculatory duct of male after mating.

是产生同一发育阶段的真核和无核精子的场所。 精子发生是向心的,早期的胞囊(精原细胞和精母 细胞)在精巢外围,更成熟的胞囊(精细胞和精母) 在精巢的中心区。精巢由外向内可见大小不等且 逐渐稀疏的胞囊(图2:D)。贮精囊内可见大量的 真核精子和无核精子,其中,无核精子占有大量比 例(图3:A,B)。雄性附腺呈圆形(图4:C),最外 层是肌肉层,周围的基底膜包裹着基层的分泌细 胞(图4:A)。附腺由肌肉鞘包围的分泌上皮细胞 组成,线粒体排列成管状且与肌肉纤维平行排列, 在任一层,肌纤维相互紧密连接(图4:B)。射精 管中可观察到真核精子及无核精子,其中,无核精 子占有大量比例(图5:A,B)。

2.3 交尾前后雄性生殖系统形态学和组织学对 比

在形态学方面,对比沙棘木蠹蛾雄性生殖系

统的各个部分,可以初步判断雄蛾是否交尾。实验用的人工饲养的未交尾雄蛾的生殖系统贮精囊和射精管呈白色(图1:C),其内包含大量的精子束待交尾,灯诱到的已交尾雄蛾的生殖系统呈透明或半透明状(图1:D),说明尽管雄蛾交尾一次后补充精子,但生殖道内的总精子数量较交尾前少,交尾前精子充足,全部填满生殖道,交尾后消耗了部分精子,所以生殖道颜色有所变化,尤其是贮精囊和射精管以及附腺管由白色变为透明或半透明状。

在组织学方面,对比交尾前后沙棘木蠹蛾生 殖系统各部分的组织学切片,除雄性附腺外,在交 尾前的精巢(图2:A,C)、贮精囊(图3:A)和射精 管(图5:A)中都能观察到真核精子束。

3 讨论

3.1 鳞翅目的精子类型

图 2 沙棘木蠹蛾精巢组织学图 Fig. 2 Histological sections of testes in *Holcocerus hippophaecolus* A. 交尾前精巢纵切面(箭头指真核精子束);B. 交尾后精巢纵切面; C. 交尾前精巢横切面(箭头指真核精子束);D. 交尾后精巢横切面。

A. longitudinal section of testis before mating (arrow directs the eupyrene sperm buddle); B. longitudinal section of testis after mating; C. cross-section of testis before mating (arrow directs the eupyrene sperm buddle); D. cross-section of testis after mating.

图 3 沙棘木蠹蛾贮精囊组织学图 Fig. 3 Histological sections of seminal vesicle in *Holcocerus hippophaecolus* A. 交尾前贮精囊(箭头指真核精子束); B. 交尾后贮精囊。

A. seminal vesicle before mating (arrow directs the eupyrene sperm buddle) ; B. seminal vesicle after mating.

鳞翅目与其它目的昆虫不同,除产生真核精子外,还产生无核精子,有核精子有核和一个顶体 在前端区域,无核精子无核和顶体,被浓密的帽子 覆盖住顶端(Freitas *et al.*,2010)。鳞翅目的2种 精子都有9+9+2的基因丝和2个线粒体。并且 无核精子的数量远多于真核精子(Freitas *et al.*, 2010)。如小地老虎产生的精子中,23.8%为真核 精子,76.2%为无核精子(卢中建,1989)。粘虫的

图 4 沙棘木蠹蛾雄性附腺组织学图 Fig. 4 Histological sections of male accessory gland in *Holcocerus hippophaecolus* A. 基底膜与分泌细胞; B. 线粒体与肌纤维; C. 雄性附腺整体。

A. basement membrane and secretory cells; B. mitochondria and muscle fiber; C. overall male accessory gland.

图 5 沙棘木蠹蛾射精管组织学 Fig.5 Histological sections of ejaculatory duct in Holcocerus hippophaecolus

A. 交尾前射精管; B. 交尾后射精管(黑色箭头指真核精子束)。

A. ejaculatory duct before mating; B. ejaculatory duct after mating (black arrow directs eupyrene sperm buddle).

受精囊中 92.5% 的精子为无核精子(He et al., 1995)。交配后,真核精子与无核精子一起转移到 受精囊中,但只有真核精子能与卵受精,无核精子 通过自溶而逐渐消失(卢中建等,1992,1993)。作 者通过对沙棘木蠹蛾雄性生殖系统的组织学观 察,发现精巢、贮精囊以及射精管内,无核精子的 数量远多于真核精子,这与小地老虎中的精子数 量研究结果相符,判定可能这是鳞翅目雄性生殖 系统的共同特征。

沙棘木蠹蛾雄虫精巢内精子成熟后向外释放,贮存于贮精囊中。当精子离开精巢后,2种精子的包囊细胞消失,在贮精囊内,真核精子组成束

状。既然 2 种精子都在交尾过程中转移至雌蛾体 内,只有真核精子参与受精卵的形成,雄虫为什么 要耗费大量的物质和能量来产生这种无效配子? 无核精子有什么作用? 很多研究者提出了各种假 说:无核精子可为真核精子提供营养(Riemann and Gassner, 1973a);作为糖原生物合成的原料 (Sugai, 1965);帮助真核精子在雌蛾生殖道内游动 及转移(Iriki, 1941; Osanai *et al.*, 1990);减少精子 竞争,推迟再交配(Riemann and Gassner, 1973b; Penny and Nina, 1999);为真核精子通过精巢的基 膜打通道路(Katsuno, 1997)。由于沙棘木蠹蛾一 生只交尾一次,我们的组织学观察结果可进一步 证明无核精子对一生只交尾一次的雌性的作用是 可推迟其再交配,减少精子竞争的可能性,从而有 利于本次交配的真核精子与卵细胞结合。

3.2 鳞翅目雄虫交尾与否的生殖系统形态标准

鳞翅目部分种中,雌蛾受精囊内的一个精包 代表一次成功的交配,然而在一些种类中,精包不 存在,要用不同的方法确定是否交配过。鳞翅目 一些种类的雄蛾交尾阶段可通过复射精管的颜色 判断,如美洲斑潜蝇 Liriomyza sativae 的复射精管 中含有无核精子、单个的真核精子和真核精子束 (Spurgeon et al., 1992)。目前的形态学和组织学 结果显示,当沙棘木蠹蛾的射精管内充满精子时, 射精管呈白色;射精管内无精子呈透明状;当贮精 囊内的精子重新填满射精管,只填满前部末端(与 附腺连接处),而后部末端不被重新填满。因此, 每一个射精管的颜色对应着精子的填充状态,通 过被描述成白色(充满精子和精子束),一半白色 (前端白色)(一半精子和精子束),或透明(无精 子和精子束),可以判断交尾状态(Spurgeon et al., 1992)。

在 雄 性 烟 蚜 夜 蛾 Heliothis virescens 中 (Spurgeon et al., 1992),精子在交尾的过程中全部 排出体外,交尾后 0~5 h,射精管内没有精子束,5 h 后射精管内再生精子束。交尾后复射精管的颜 色变化:所有的复射精管交尾后 0 h 透明;85% ~ 95% 的复射精管在交尾后 2~6 h 半透明或半白 色;交尾后 8~12 h,复射精管只有一小部分(10% ~25%)是透明或半白色,之后全部变为白色。因 此,根据复射精管的精子填充量判断交尾状态的 前提是交尾后的复射精管的精子填充需要很长一 段时间,且填充后的精子数量与交尾前相比有衰 减趋势。本研究中所用雄虫无论人工饲养的未交 尾雄虫还是交尾后的雄虫,都是在羽化后6h内或 交尾后6h内固定的,保证了在精子填充之前,所 以经过解剖实验观察,可以初步判断雄蛾交尾与 否。

在鳞翅目昆虫中,随着交尾后时间的不断增 加,精子所在地也在不断改变,同时精子的形态也 随着精子的转移而改变(陈长琨和李国清,1998; Lemos et al., 2005)。在大多数雌蛾体内, 交尾后6 ~8h精子从精包转移至受精囊内,一小部分剩余 精子在交配后至少24 h 还在交配囊中。精子形态 方面,长的、细的真核精子逐渐弯曲。大多数蛾类 交尾后 6~8 h, 不管是在精包中还是在受精囊中, 真核精子束缠绕在一起(Freitas et al., 2010)。因 此,我们建议可根据雌蛾精包囊的颜色和形状来 判断精子的填充状态,从而判断雌蛾的交尾阶段。 白色,坚固状,没有精子转移至受精囊内;微白色, 坚固状,顶点有一个小凹陷,至少一部分精子转移 至受精囊中;微白色,破碎或瓦解或顶点有一个 腔,大部分精子转移至受精囊中;透明,瓦解或破 碎但存在部分,只有少部分精子没有转移至受精 囊内;精包囊不存在,精子存在于贮精囊中。

4 结论

本论文首次观察了木蠹蛾科的生殖系统,从 形态学和组织学两个方面确定了沙棘木蠹蛾雌、 雄生殖系统的特征。同时初步确立了判断雄蛾交 尾与否的形态学和组织学观察,尤其是贮精囊和射 精管,可判断精子束的填充状态,从而判断雄蛾交 尾与否。确定沙棘木蠹蛾生殖系统的形态组织结 构可为进一步深入研究其生殖生理学以及防治提 供理论基础。确立判断雄蛾交尾与否的标准可评 价性信息素引诱剂对沙棘木蠹蛾的防治效果,对 指导沙棘木蠹蛾的防治具有重要意义。

参考文献(References)

Freitas SPC, Goncalves TCM, Serrao JE, Costa J, Santos-Mallet JR, 2010. Male reproductive system structure and accessory glands ultrastructure of two species of *Triatoma* (Hemiptera, Reduviidae, Triatominae). *Micron*, 41 (5): 518-525.

- He YB, Tanaka T, MiyataT, 1995. Eupyrene and apyrene sperm and their numerical fluctuations inside the female reproductive tract of the armyworm, *Pseudaletia separate*. *Insect Physiol.*, 41 (8):689-694.
- Iriki S, 1941. On the function of apyrene spermatozoa in the silkworm (in Japanese). Zool. Mag., 53:123-124.
- Katsuno S, 1997. Studies on eupyrene and apyrene spermatozoa in the silkworm *Bombyx mori* (Lepidoptera: Bombycidae). *Appl. Entomol. Zool.*, 12 (2):352-359.
- Lemos WP, Serrao JE, Ramalho FS, Cola Zanuncio JC, Lacerda MC, 2005. Effect of diet on male reproductive tract of *Podisus nigrispinus* (Heteroptera: Pentatomidae). *Braz. J. Biol.*, 65(1):91-96.
- Osanai M, Kasugn H, Aigaki T, 1990. Physiology of sperm maturation in the spermatophore of the silkworm, *Bombyx mori*. // Hoshi M, Yamashita O (eds.). Advances in Invertebrate Reproductive. Amsterdam: Elsevier Science Publishers. 531-536.
- Penny AC, Nina W, 1999. Non-fertile sperm delay female remating. Nature, 11:397-486.
- Riemann JG, Gassner G, 1973a. Ultrastructure of lepidopteran sperm within spermatheca. Ann. Entomol. Soc. Am., 68: 35-39.
- Riemann JG, Gassner G, 1973b. Ultrastructure of lepidopteran sperm from spermatheca. Ann. Entomol. Soc. Am., 66 (1):154-159.
- Spurgeon DW, Raulston JR, Lingren PD, 1992. Temporal aspects of sperm transfer and spermatophore condition in Mexican rice borers (Lepidoptera: Pyralidae). J. Econ.

Entomol. , 87 (2) : 371-376.

- Sugai E, 1965. Formation of sperm dimorphism and glycogen of the testicular membrane in the silkworm, *Bombyx mori* L. (in Japanese). *Zool. Mag.*, 74:276-282.
- Tian RG, Yan F, Zhang YL, 2006. Male reproductive system and spermatogenesis in Homoptera (Insecta: Hemiptera). *Entomotaxonomia*, 28 (4) :241-254.
- 李照会,郑方强,宋东苓,1993.天蛾科雌性生殖系统形态 解剖研究.山东农业大学学报,24(2):160-168.
- 卢中建,1989.小地老虎和粘虫的精子发生、形成以及后期 变化和高温的影响.硕士学位论文.南京:南京农业大 学.
- 卢中建,王荫长,尤子平,1992.小地老虎真核和无核精子 在生殖道中的后期变化.南京农业大学学报,15(4): 45-49.
- 卢中建,王荫长,尤子平,1993.小地老虎真核和无核精子 的超微结构.南京农业大学学报,16(3):38-43.
- 路长宽,宗世祥,骆有庆,许志春,马超德,赵怀玉, 2004.沙棘木蠹蛾成虫行为学特征及性诱效果研究.北 京林业大学学报,26(2):79-83.
- 孙雅杰,陈瑞鹿,王素云,暴祥致,1991.草地螟雌蛾生殖 系统发育的形态变化.昆虫学报,34(2):248-249.
- 宗世祥,骆有庆,路常宽,许志春,张连生,2006.沙棘木 蠹蛾生物学特性的初步研究.林业科学,42(1):79-84.