小波分析二点委夜蛾发生规律

关秀敏1*** 朱军生1 陈淑娟2 刘麦丰3 胡英华4 李国强5 董保信1***
(1. 山东省植物保护总站 济南 250100; 2. 山东省农业科学院 济南 250100; 3. 肥城市植物保护站 肥城 271600; 4. 济宁市植物保护站 济宁 272037; 5. 聊城市植物保护站 聊城 277500)

摘要 二点委夜蛾 Proxenus lepigone (Moschler), 属鳞翅目夜蛾科, 主要分布于日本、朝鲜、俄罗斯和欧洲等地。我国于2005年7月在河北省夏玉米田首次发现。近年来, 该虫发生范围不断扩大，为害程度日益加重。2011年二点委夜蛾在我国夏玉米产区严发育虫情涉及6省47市302个区（县），面积近220万hm²。山东省2007年首次在德州市发现该虫为害玉米，2011年全省17个地市普遍为害严重。为更准确地确定该虫的发生代次、每代各虫态发生时期、发生盛期、发生高峰日等信息, 适时准确监控发生时期, 本文采用symlets小波函数变换滤除高频信息, 对山东省各点二点委夜蛾成虫诱虫数据进行分析, 结果显示, 二点委夜蛾在山东省一年发生4代, 越冬代, 1代, 2代, 3代。始见蛾日在3月底至4月上旬, 越冬代成虫发生期在3月底至4月上中旬, 1代发生期在4月上中旬至6月中下旬, 2代发生期在6月中旬至8月上中旬, 3代发生期在8月上至9月中下旬, 越冬代幼虫发生期在9月中旬至10月中下旬, 10月下幼虫左右老熟幼虫做茧越冬。另外, 通过调查和室内观察还发现高温环境不利于二点委夜蛾幼虫生长发育, 7-8月份高温期, 成虫致畸率较高。

关键词 小波函数, 二点委夜蛾, 发生规律, 玉米

Wavelet analysis of the occurrence frequency of Proxenus lepigone (Moschler)

GUAN Xiu-Min1*** ZHU Jun-Sheng1 CHEN Shu-Juan2 LIU Mai-Feng3 HU Ying-Hua4 LI Guo-Qiang5 DONG Bao-Xin1***
(1. Shandong Plant Protection Station, Jinan 250100, China; 2. Shandong Academy of Agricultural Sciences, Jinan 250100, China; 3. Feicheng Plant Protection Station, Feicheng 271600, China; 4. Jining Plant Protection Station, Jining 272037, China; 5. Tengzhou Plant Protection Station, Tengzhou 277500, China)

Abstract Proxenus lepigone (Moschler) (Lepidoptera: Noctuidae), a species mainly distributed in Japan, Korea, Russia and Europe, was first discovered in China in a summer maize field in Hebei Province in 2005 July. The range of P. lepigone in China has expanded in recent years, and it is causing progressively more damage. In 2011, an outbreak on the summer corn crop in China involved 302 districts, 6 provinces and 47 cities and covered an area of nearly 2.200.000 hm². P. lepigone was first found in Shandong Province on maize crops in Dezhou City in 2007, and later in 17 cities in that Province, where it caused serious damage. In order to more accurately determine the occurrence generations, development period, peak period, peak day, and so on, we analyzed trapping data on P. lepigone adults using symlets wavelet transformed filter high frequency information. The results show that P. lepigone has 4 generations a year in Shandong Province; an overwintering generation, first generation, second generation and third generation. The appearance of the first overwintering moths is from the end of March to the middle of April, overwintering generation moths occur from the end of March to the middle of April. The occurrence period of the first generation is from early April to late June, that of second generation from middle June to middle August, the third generation from early August to late September, and overwintering larvae from mid-September to late October; after that the mature larvae overwinter in cocoons. In addition,

* 资助项目：公益性行业(农业)科研专项(200903004)。
***E-mail: guanmian@126.com
***通讯作者, E-mail: zbczh@ yahoo. com. cn

收稿日期: 2013-04-18, 接受日期: 2013-08-20

由于二点委夜蛾发生期内，各世代互相重叠，仅从原始数据上明确其发生规律特点比较困难，为了更准确确定二点委夜蛾的发生代次、每代各虫态发生历期、发生盛期、发生高峰日等信息，作者采用了小波变换滤除高频信息，对该虫害虫年发生规律进行了分析。symlets小波函数系是由Daubechies构造，它是一种dbN小波函数系的改进小波，继承了dbN小波函数紧支撑、较高的消失长度、近似正交等特点，更重要的是symN小波函数具有dbN小波函数所不具有的近似对称性，因此，在利用symN小波函数进行多分辨率分解时不会发生数据漂移的现象，对于准定位害虫的发生时期非常重要（朱军生等，2010,2011）。

本文根据原始数据序列表长度、消失长度、分析尺度等判断标准的需要，采用了sym4小波函数对2011—2012二点委夜蛾成虫的田间监测数据进行了分析，摸清了二点委夜蛾的发生规律，为二点委夜蛾进一步研究提供了基础。

1 数据来源与方法

1.1 二点委夜蛾成虫诱集

选择济宁、肥城、滕州3个测报点，利用佳多自动虫情测报灯，自4月1日至9月30日，在二点委夜蛾常发生场所进行诱蛾。每日10:00统计一次成虫发生数量。

1.2 小波分析方法

利用小波分析的主要功能之一多分辨率分析法，对调查数据进行分析。多分辨率分析通过把函数层层分解为高频和低频从而把函数中的概貌信息和细节信息分离开来，一个4层分解的多分辨率分析过程如图1所示。

![图1 数据序列的多分辨率分解](attachment:fig1.png)

Fig. 1 Multiresolution decomposition of data series

整个分析过程是利用Mallat快速算法完成，分解关系式为：

\[f = f_4 + d_4 + d_3 + d_2 + d_1 \]

其中，\(f \)为原数据序列，\(f_4, f_3, f_2, f_1 \)为低频部分，\(d_4, d_3, d_2, d_1 \)为高频部分。低频部分为规律部分，一层一层进行分解，高频部分为噪音部分，可滤掉，不予考虑。高频部分每分解一层就会平滑一些，最终，当分解到特定层时，低频部分会显示出原函数的变动规律。多分辨率分析就是通过一层一层的分解，逐渐抽丝剥茧，将二点委夜蛾发生调查数据中的高频振荡滤除，最终其发生变化的概貌规律呈现出来。

分解尺度由低频信号能清晰表示年变化的趋势来确定，尺度过大时，低频信号会更加平滑，对年变化趋势的部分特性的描述会不详细；尺度过小时，其中所含的高频振荡信息并未被完全滤除，从而影响对害虫各发生期特征的判断。因此，分解尺度不宜过大或过小，在确定分解尺度的大小时，通过观察分解后的信号特征来选择合适的尺度。
时，需要将经验判断和数学方法结合起来。

整个计算过程采用 Matlab 数值分析软件完成。

2 结果与分析

2.1 原始数据资料整理

分析数据采用山东省肥城、济宁、滕州 3 测报点 2012 年二点委夜蛾测报灯逐日诱蛾数量（从始
见蛾日开始至诱蛾结束），如图2所示。

图2中横坐标数值为始见蛾日以后的天数，
如始见蛾日是 4 月 1 日，横坐标标记为 0，其后 20
d 为 4 月 21 日，标记为 20，依次类推。其中，肥城
始见蛾日是 4 月 8 日，其后 20 d 为 4 月 28 日，标
记为 20；济宁始见蛾日是 4 月 2 日，其后 20 d 为 4
月 22 日；滕州始见蛾日是 4 月 28 日，其后 20 d 为
5 月 18 日。

图 2 二点委夜蛾蛾量原始数据

Fig. 2 Initial data of trapped moth

A. 肥城数据；B. 济宁数据；C. 滕州数据。

A. trapped moth data of Feicheng; B. trapped moth data of Jining; C. trapped moth data of Tengzhou.
2.2 肥城二点委夜蛾蛾量年变化规律的小波分析

采用 sym4 小波函数对肥城 2012 年二点委夜蛾日诱蛾量数据序列进行小波分解，经过分析，最
终将分解尺度确定为 4 层。图 1 为 1 ~ 4 层的低频系数重构后得到的各层低频数据序列，其中，
A1, A2, A3, A4 分别为第 1 层、第 2 层、第 3 层和第 4 层的重构低频量数据序列，横坐标数值意义与
图 2 一致，0 为始见蛾日，20 为始见蛾日后第 20
天，即肥城始见蛾日是 4 月 8 日，横坐标标记为 0，
其后 20 d 为 4 月 28 日，标记为 20，依次类推。

由图 3 可以看出，由于第 4 层尺度过大，滤掉
了一些信息，第 3 层低频重构序列可以全面反应
出二点委夜蛾蛾量变化规律，共 4 个代次更替，越冬
代起止时间为 4 月 12—27 日，盛期为 4 月 14—23
d，蛾峰日为 4 月 20 日左右；1 代起止时间为 6 月
7 日—7 月 8 日，盛期为 6 月 15—7 月 3 日，蛾峰日
为 6 月 19 日左右；2 代起止时间 7 月 9 日—8 月
10 日，盛期为 7 月 17—8 月 1 日，蛾峰日为 7 月
27 日左右；3 代跨度较大，起止时间 8 月 10 日—9
月 17 日；盛期 8 月 16 日—9 月 8 日，有一个拖后的
次峰，蛾峰日 8 月 24 日。

2.3 济宁二点委夜蛾蛾量年变化规律的小波分析

同样，采用 sym4 小波函数对济宁市 2012 年
二点委夜蛾日诱蛾量数据序列小波分解，最终得
到 4 层低频数据序列，由于第 4 层尺度过大，滤掉
了一些信息，选择第 3 层低频重构序列即可全面
反应出二点委夜蛾蛾量变化规律（图 4），横坐标
数值为始见蛾日以后的天数，如济宁始见蛾日是 4
月 2 日，横坐标标记为 0，其后 20 d 为 4 月 22 日，
标记为 20，依次类推。济宁二点委夜蛾 2 代日诱
g蛾量远高于其他代次，越冬代发生较早，起止时间
为 4 月 1—12 日，盛期为 4 月 5—12 日，蛾峰日为
4 月 11 日左右；1 代起止时间为 5 月 24 日—6 月
18 日，盛期为 6 月 1—14 日，蛾峰日为 6 月 7 左
右；2 代起止时间 7 月 3 日—8 月 5 日，盛期为 7 月
10—31 日，蛾峰日为 7 月 22 日左右，其后还有一个
小次峰；3 代起止时间 8 月 19 日—9 月 15 日，盛
期 8 月 25 日—9 月 2 日，蛾峰日 8 月 31 日左右。

2.4 滕州二点委夜蛾蛾量年变化规律的小波分析

滕州 2012 年二点委夜蛾日诱蛾数据相对简
单，用 sym4 小波函数 4 层分解后，第 2 层低频重
构序列即可全面反应出二点委夜蛾蛾量变化规律
（图 5），横坐标数值为始见蛾日以后的天数，滕州
始见蛾日是 4 月 28 日，横坐标标记为 0，其后 20 d
为 5 月 18 日，标记为 20，依次类推。图中信息显

图 3 肥城逐日诱蛾量 4 层小波分解低频重构数据
Fig. 3 Low frequency reconstruction data based on four layers wavelet
decomposition of daily trapped moth quantity in Feicheng

纵坐标表示每层低频重构数据，无量纲。下同。
The ordinate is low frequency reconstruction data every layer and non-dimensional. The same below.
示，越冬代诱蛾量几乎为零，图中显示不明显；1 代峰值较低，时间较晚，起止时间为 6 月 1—17 日，盛期为 6 月 7—16 日，蛾峰日为 6 月 11 日左右；2 代峰值较高，起止时间 7 月 10 日—8 月 13 日，盛期为 7 月 17 日—8 月 4 日，蛾峰日为 7 月 21 日左右；3 代有两个峰，起止时间 8 月 24 日—9 月 26 日，4 月 26 日—9 月 2 日，蛾峰日 9 月 2 日左右。

3 讨论

以上数据结果可以看出，济宁、滕州、肥城 3 地区二点委夜蛾原始诱蛾数据杂乱，出现多个峰值，规律不明显。经小波函数分解、过滤、重组后，规律明显清晰。其中，济宁越冬代出蛰较早，为 4 月 2 日，1 代蛾量很高，蛾峰日诱蛾量比其他两个地方分别高 5 倍、8 倍，而其他代蛾量相对低很多，加之后期世代重叠严重，所以各代间分界规
律不明显：滕州越冬代蛾量很低，蛾峰不明显，1代峰值较低，时间较晚，约比济宁拖后7d左右，但前期短，2代蛾量较高，峰期分界明显，3代蛾量低，峰期还比较完整；肥城原始蛾数据最零乱，但小波分析后，4个世代发生规律最完整清晰，3代成虫世代重叠较严重。三地区结果综合分析，山东省二点委夜蛾一年发生4代，越冬代、1代、2代、3代，始见蛾在3月底—4月上旬，越冬代发生期在3月底至4月上旬，1代发生期在4月上旬—6月中下旬，2代发生期在6月中下旬至8月上中旬，3代发生期在8月上旬至9月中下旬，越冬代幼虫发生期在9月中旬至10月中下旬，10月下旬左右老熟幼虫做茧越冬。这一结果与张小龙等（2011）报道结果基本一致，但发生期较河北省偏早10d左右，越冬代成虫盛期相对明显。

另外，从诱蛾量上看，越冬代和3代较低，部分地区几乎诱不到成虫，1代、2代蛾量较高。如聊城、济南始见蛾日6月上旬，也越过越冬代发生期，但2代蛾量较高分别为2171头、10505头，分析原因可能与二点委夜蛾食性杂、繁殖力强有关，也可能与二点委夜蛾成虫近距离迁飞有关。另有报道称二点委夜蛾幼虫生长适宜温度较窄，36℃条件下，幼虫无法存活，成虫在高温下也很容易死亡，还可能影响蛾卵巢的发育，IV级卵巢比例较低（李立涛等，2012）。7—8月份山东省温度较高，不利于二点委夜蛾幼虫生长发育，作者室内饲养观察发现，成虫致蔫率较高，7月中旬，饲养210头2—3龄幼虫至其羽化得到成虫122头，其中有31头翅未发育完全（翅长约为正常成虫的一半），致

畸率约20%—30%。3代诱蛾量低可能与此有关。

参考文献（References）

