二种危害小麦的草螟在中国的适生区*

季英超1,2 秦 萌3 吴立峰3 陈小龙3 张润志1**

(1. 中国科学院动物研究所,北京 100101; 2.山东农业大学植物保护学院,泰安 271018; 3. 全国农业技术推广服务中心,北京 100026)

摘要【目的】 白眉野草螟 Agriphila aeneociliella (Eversmann)是近几年在山东、山西发现严重危害小麦的新害虫,其同属的北美田草螟 A. vulgivagella (Clemens)在美国和加拿大危害小麦、黑麦等,它们是否可以对全国小麦主产区构成威胁,需要进行其适生区的研究。【方法】 根据现有分布区的最佳拟合获得预测参数,利用 CLIMEX 模型获得 2 种害虫在全国小麦生产区的适生区。【结果】 白眉野草螟和北美田草螟在我国小麦主要产区均具有很高的适生性(EI 值>20)。【结论】 对白眉野草螟加强防控防止扩散危害、对北美田草螟加强检疫防止入侵我国,对保护我国小麦安全生产均具有重要意义。

关键词 白眉野草螟,北美田草螟,小麦,害虫,适生区

Potential distribution of two wheat pests, Agriphila aeneociliella and A. vulgivagella, in China

JI Ying-Chao^{1, 2} QIN Meng³ WU Li-Feng³ CHEN Xiao-Long³ ZHANG Run-Zhi^{1**}

(1. Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; 2. College of Plant Protection, Shandong Agricultural University, Taian 271018, China;

3. The National Agro-Tech Extension and Service Center, Beijing 100026, China)

Abstract [**Objectives**] The insect *Agriphila aeneociliella* (Eversmann)] is a new pest of wheat crops that has appeared in Shandong and Shanxi Provinces in the past a few years. Another species in the same genus *Agriphila* Hübner, *A. vulgivagella* (Clemens) is also a pest of wheat and rye crops in the US and Canada. Their possibly damage areas in China is essential to wheat production. [**Methods**] Based on actual happens and biological characters, their potential distribution areas in China were analyzed by using of CLIMEX model. [**Results**] CLIMEX model analysis indicates that the EI values of both species are > 20 in most of China's main wheat production areas. [**Conclusion**] It is important to both limit the spread of *A. aeneociliella* and prevent the introduction of *A. vulgivagella* through effective quarantine measures.

Key words Agriphila aeneociliella (Eversmann), Agriphila vulgivagella (Clemens), wheat, pest, potential distribution area

近年来,一种被鉴定为白眉野草螟 Agriphila aeneociliella (Eversmann)的危害冬小麦的害虫受到广泛关注(《农民日报》2013年09月30日03版)。报道称:2010年4月,在山东省莱州市发现一种危害小麦根茎基部的新害虫且在之

后的 3 年时间里呈扩散爆发之势,对当地小麦造成较大危害,形成严重的缺苗断垄,严重者 50%的麦苗死亡,甚至绝产。2013 年 3 月,山西省晋城市泽州区也发现类似的小麦新害虫,发生面积近万亩。有关信息显示,山东省曾紧急部署查

收稿日期:2013-12-27,接受日期:2014-01-02

^{*} 资助项目:"十二五"国家科技计划(2013AA102903-7/2013CB127605)

^{**}通讯作者, E-mail: zhangrz@ioz.ac.cn

治这种小麦新发害虫(刘刚,2013)。据国家小麦产业技术体系小麦地上虫害防控岗位研究团队调查,白眉野草螟幼虫在小麦返青期开始为害,白天吐丝结网藏于根茎处或土缝间,夜晚出来取食,咬食小麦苗茎基部及叶片,受害严重的麦苗被齐根咬断,造成麦茎折断或叶片圆缺,致使麦苗萎蔫枯死。我们在研究中发现,与白眉野草螟同属的另外一种害虫北美田草螟 Agriphila vulgivagella (Clemens)是美国和加拿大危害小麦、黑麦、杂草和其他禾本科作物的重要农业害虫。由此,作者对上述两种草螟在中国的适生区进行了研究。

1 材料与方法

1.1 分析方法

本研究使用由澳大利亚联合科学与工业研究组织(简称 CSIRO)Sutherst & Maywald 建立的动态分析模型 CLIMEX3.0 以及由美国环境系统研究所公司(Environmental Systems Research Institute, ESRI)发明的 ArcGIS9.3 软件。根据目前实际分布情况及相关生物学选取参数值进行拟合实际分布,使预测分布与实际分布达到最大程度拟合并得到最终参数值,利用最终参数得到其在中国适生的生态气候指数(EI)值,最后将

EI 值导入 ArcGIS 进行反距离权重插值(IDW)获得其在中国的适生区。本文采用 CLIMEX 通用的将物种在某地的适生程度按 EI 值所属区间分为 4 个级别(Sutherst et al., 2009),即当某地EI=0 为非适生区; $0 < EI \le 10$ 为低度适生区; $10 < EI \le 20$ 为中度适生区; $20 < EI \le 100$ 为高度适生区。

1.2 气候和地理数据

采用 CLIMEX 自带 1961—1990 年 2 218 个气象站点数据集,导入从中国气象科学数据共享服务网(http://cdc.cma.gov.cn/home.do/)下载整理的我国 1961—1990 年 740 个气象站点地面气象数据。比例尺 1:4 000 000 万的中国国界及省界图,从国家基础地理信息网(http://nfgis.nsdi.gov.cn/)下载获得。

2 结果与分析

2.1 田草螟属昆虫概况

白眉野草螟和北美田草螟隶属于鳞翅目 Lepidoptera、草螟科 Crambidae、田草螟属 Agriphila Hübner。草螟属全世界已知种共有 36 种,中国 5 种(表 1),北美田草螟在我国尚 无分布记录。

表 1 中国田草螟属 Agriphila 昆虫的寄主与分布情况 Table 1 Host plants and distribution areas of Chinese Agriphila

物种 Species	寄主 Host plant	分布 Distribution
白眉野草螟(铜色田草螟) A. aeneociliella	无芒雀麦 Bromu sinermis 小麦 Triticum aestivum	中国(河北、内蒙古、黑龙江、甘肃、宁夏、 新疆),朝鲜,日本,俄罗斯,欧洲
茅田草螟 A. selasella	碱茅 Puccinellia maritime 甜茅属 Glyceria spp. 羊茅 Festuca ovina	中国(青海),中亚,欧洲
才山早埃 A. Setasetta	キ赤 Festuca ovina 早熟禾属 Poa spp. 大麦属 Hoordeum spp.	中国(自 <i>海)</i> ,中业,以 <i>加</i>

米草属 Spartina spp.

大草 Deschampsia caespitosa 中国(黑龙江),印度,小亚细亚,中亚,早熟禾属 Poa spp. 西伯利亚,外高加索,卡萨克斯坦,欧洲 ギ茅 Festuca ovina 中国(新疆),欧洲,哈萨克斯坦,小亚细草地早熟禾 Poa pratensis 亚,外高加索,西伯利亚,加拿大 茎结田草螟 A. geniculea 禾本科 Gramineae 中国(云南),日本,欧洲

注:部分数据来源于李卫春(2010)。 Part of data come from Li (2010).

白眉野草螟模式标本记述于俄罗斯斯帕斯克(Spassk 53.93 N, 43.18 E),曾被指定中文名称:铜色田草螟(李卫春,2010)和麦根茎草螟(*Crambus* sp.)(王海英等,2013),在我国和世界已有记录的地点见表 2。

北美田草螟目前仅分布于美国和加拿大 (图1)。

2.2 二种草螟在中国的适生区

根据白眉野草螟和北美田草螟实际分布,利用 CLIMEX 模型自带的 Template-temperate 模板参数作为初始参数进行最大程度拟合获得最佳参数值(表3),利用这些参数对中国的适生区进行分析。

表 2 白眉野草螟在中国及世界的记录地点
Table 2 Recorded locations of Agriphila aeneociliella in China and other countries

地点 Location	高度与时间 Height and date	经纬度 Longitude and latitude
新疆塔城 Tacheng, Xinjing	1990	46.73 N, 82.95 E
宁夏泾源 Jingyuan, Nixia	2 400 m , 2000	35.29 N, 106.19 E
河北蔚县 Yuxian, Hebei	1 200 m , 2005	39.57 N, 115.02 E
宁夏盐池 Yanchi, Ningxia	1 320 m , 2006	37.43 N, 107.23 E
内蒙古包头 Baotou, Inner Mogolia	1 075 m , 2006	40.39 N, 109.49 E
甘肃肃南 Sunan, Gansu	2 251 m , 2007	38.50 N, 99.36 E
甘肃榆中 Yuzhong, Gansu	2 178 m , 2007	35.53 N, 104.06 E
山东莱州 Laizhou, Shandong	2010	37.16 N, 119.96 E

山西晋城 Jincheng, Shanxi	2013	35.60 N, 112.90 E
俄罗斯古西诺奥泽尔斯克 Taezhnyi Village, Russia	50.32 N, 107.68 E	
俄罗斯乌兰乌德西南 Kalenovo Village, Russia	51.44 N , 107.07 E	
俄罗斯乌兰乌德 Ulan-Ude, Russia	51.75 N, 107.64 E	
俄罗斯阿穆尔州 Amurskaya, Russia	54.60 N, 127.48 E	
俄罗斯奔萨州 Penzenskaya, Russia		53.13 N, 44.09 E
俄罗斯乌拉尔 Ural, Russia		59.93 N, 60.03 E
日本岩手县 Hanamaki-shi, Japan		39.29 N, 141.33 E
韩国忠清北道 Chungcheongbuk-do, Korea		36.80 N, 127.70 E

注:部分数据来源于李卫春 (2010)及 Shodotova (2008)。

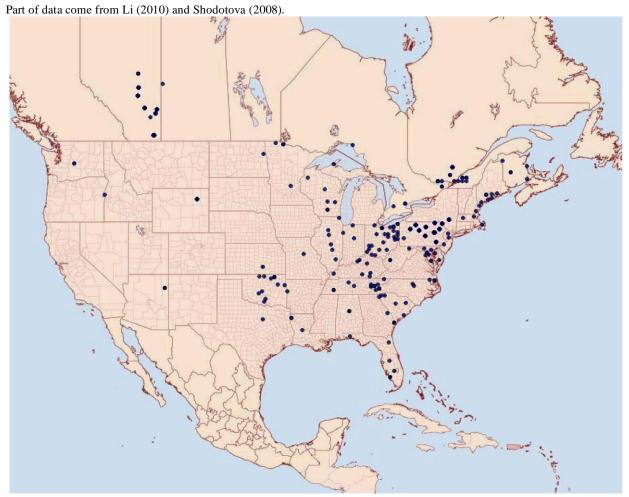


图 1 北美田草螟分布(引自 http://mothphotographersgroup.msstate.edu/)

表 3 白眉野草螟和北美田草螟 CLIMEX 预测适生区的参数值 Table 3 Selected parameters in potential distribution areas analysis for Agriphila aeneociliella and A. vulgivagella by CLMEXT model

初始参数 Template-temperate initial parameter	白眉野草螟 Final parameter for A. aeneociliella	北美田草螟 Final parameter for A. vulgivagella
8.0000	1.0000	2.0000
18.0000	11.0000	10.0000
24.0000	19.0000	24.0000
28.0000	34.0000	35.0000
600.0000	0.0000	0.0000
0.2500	0.0100	0.0200
_	8.0000 18.0000 24.0000 28.0000 600.0000	initial parameter A. aeneociliella 8.0000 1.0000 18.0000 11.0000 24.0000 19.0000 28.0000 34.0000 600.0000 0.0000

CLIMEX 参数项 Items of CLIMEX parameter	初始参数 Template-temperate initial parameter	白眉野草螟 Final parameter for A. aeneociliella	北美田草螟 Final parameter for A. vulgivagella
最适土壤湿度下限 SM1	0.8000	0.2000	0.4000
最适土壤湿度上限 SM2	1.5000	0.7000	0.8000
发育致死土壤湿度 SM3	2.5000	1.1000	1.0000
冷抑制开始积累时的温度阈值 TTCS	0.0000	-10.0000	-4.0000
冷抑制积累速率 THCS	0.0000	-0.0001	-0.0001
冷抑制开始积累时的最小日度 DTCS	15.0000	0.0000	0.0000
冷抑制积累速率 DHCS	-0.0001	0.0000	0.0000
热抑制开始积累时的温度阈值 TTHS	30.0000	34.0000	35.0000
热抑制积累速率 THHS	0.0050	0.0100	0.0050
热抑制开始积累时的最大日度 DTHS	0.0000	0.0000	0.0000
热抑制积累速率 DHHS	0.0000	0.0000	0.0000
干抑制开始积累时的湿度阈值 SMDS	0.2000	0.0100	0.0200
干抑制积累速率 HDS	-0.0500	-0.0500	-0.0050
湿抑制开始积累时的湿度阈值 SMWS	2.5000	1.1000	1.0000
湿抑制积累速率 HWS	0.0020	0.0100	0.0020

2.2.1 白眉野草螟的适生区 对白眉野草螟的分析结果(图2)显示:高度适生区包括山东、山西、河北、河南、安徽北部、江苏北部、陕西、甘肃南部、内蒙古西南部、宁夏、黑龙江南部、吉林、辽宁西部、四川北部;中度适生区包括新疆西北部、云南、四川南部、内蒙古北部、黑龙江北部;低度适生区包括西藏、新疆南部、甘肃北部、湖北南部、安徽南部、江苏南部。近年来白眉野草螟发生严重的山东莱州市和山西晋城泽州区 EI 值分别为 31 和36,最高 EI 值是在甘肃中部地区达到 48。

2.2.2 北美田草螟的适生区 对北美田草螟的分析结果(图 3)显示:高度适生区包括山东、山西、河南、陕西、河北、北京、天津、辽宁西

部、甘肃南部、宁夏南部、黑龙江东部、四川东部、云南、贵州西部、安徽北部、江苏北部;中度适生区包括黑龙江西部、吉林南部、内蒙古、广东;低度适生区包括新疆、青海、西藏、湖南、海南、台湾等地区。

3 讨论

我国小麦产量和消费量均居世界第一,小麦在我国国家粮食安全中有突出地位并且分布广泛(卢布等,2010)。在我国的四大小麦主产区(赵广才,2010),从白眉野草螟和北美田草螟的适生区看,均是最适合害虫生存的地区。近年来在山东莱州和山西泽州发生危害小麦的白眉

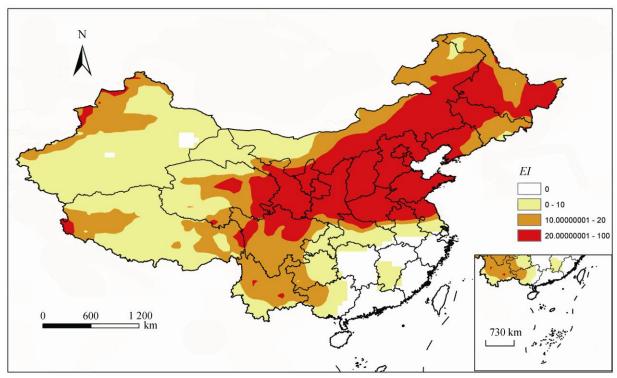


图 2 白眉野草螟在中国适生区

Fig. 2 Potential distribution areas of Agriphila aeneociliella in China

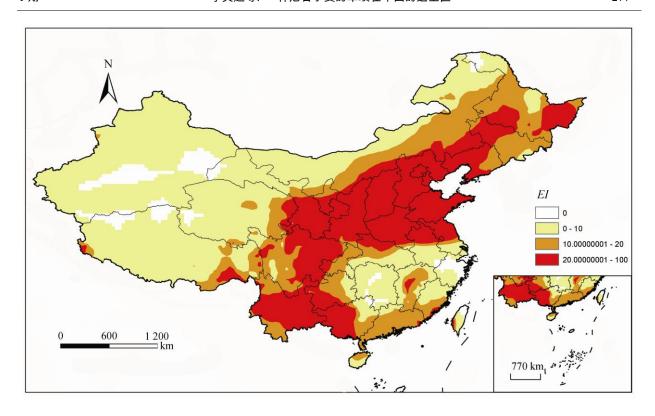


图 3 北美田草螟在中国适生区

Fig. 3 Potential distribution areas of Agriphila vulgivagella in China

野草螟有可能就是白眉野草螟广泛发生危害的 开始。另外,北美广泛存在的北美田草螟,因我 国小麦主产区均是其适生区,一旦该虫伴随贸易 产品入侵我国,也将成为我国具有潜在威胁的重 要入侵害虫,因此需要超前进行预防。口岸检疫 是预防该虫入侵的重要措施,但目前北美田草螟 还没有列入《中华人民共和国进境检疫性有害生 物名录》,因此需要考虑增补。

致谢:我们在研究过程中,得到青岛农业大学顾 耘教授在害虫发生与危害特性方面的指导;论文 在完成过程中,得到中国科学院动物研究所刘宁 博士和硕士研究生姜春燕在文献资料方面的帮 助;在此一并致谢。

参考文献 (References)

Shodotova AA, 2008, Pyralid moths (Lepidoptera: Pyraloidea) of

Buryatia.Family Crambidae. *Entomological Review*, 88(3): 286–295.

Sutherst RW, Maywald GF, Kriticos DJ, 2009. CLIMEX version3:
User s Guide. http://www. hearne.com.au/

李卫春, 2010. 中国苔螟亚科和草螟亚科系统学研究 (鳞翅目: 螟蛾总科: 草螟科). 博士学位论文. 天津: 南开大学. [LI WC, 2010. Systematic Study on Scopariinae and Crambinae (Lepidoptera: Pyraloidea: Crambidae) from China. Thesis for Doctor Degree, Tianjin: NanKai University.]

刘刚, 2013. 山东省紧急部署查治两种小麦新发病虫.农药市场信息, 07: 51. [LIU G, 2013. Inspection and management for two wheat new diseases and insect pests were urgently deployed in Shandong province. *Pesticide Market News*, 07: 51.]

卢布, 丁斌, 吕修涛, 于振文, 赵广才, 万富世, 2010. 中国小麦 优势区域布局规划研究. 中国农业资源与区划, 2: 6-12. [LU B, DING B, LU XT, YU ZW, ZHAO GC, WAN FS, 2010. Study on layout and planning of Chinese wheat regional advantages. Chinese Journal of Agricultural Resources and Regional Planning, 2: 6-12.]

王海英, 顾耘, 邹明江, 杨寿光, 郭丽萍, 原国辉, 2013. 小麦新 害虫—麦根茎草螟(*Crambus* sp.)在山东莱州的发生为害初报. 中国植保导刊, 3: 28-30. [WANG HY, GU Y, ZOU MJ, YANG SG, GUO LP, YUAN GH, 2013. Preliminary study on the occurrence and damage of wheat new pest—wheat rootstock borer (*Crambus* sp.) in Laizhou Shandong province. *China Plant Protection*, 3: 28–30.]

赵广才, 2010. 中国小麦种植区划研究(一). 麦类作物学报, 5: 886–895. [ZHAO GC, 2010. Study on Chinese wheat planting regionalization (I). *Journal of Triticeae Crops*, 5: 886–895.]