常用杀虫剂对小菜蛾天敌卷蛾 分索赤眼蜂的影响^{*}

王德森 吕利华 何余容 *** 覃松生 潘飞

(1. 华南农业大学昆虫学系 广州 510642; 2. 广东省农科院植保所 广州 510640)

Effect of conventional insecticides on *Trichogrammatoidea bactrae*. WANG De-Sen¹, LV Li-Hua², HE Yu-Rong¹**, QIN Song-Sheng¹, PAN Fei¹ (1. *Department of Entomology*, South China Agricultural University, Guangzhou 510642, China; 2. Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China)

Abstract Under laboratory conditions, effect of 11 kinds of insecticides on *Trichogrammatoidea bactrae* Nagaraja, an egg parasitioid of *Plutella xylostella* (L.), were determined. Betacypermethrin, diafenthiuron, avermectins, spinosad, chlorfenapy, fipronil and cartap had the most significant effect on the survival of adults of *T. bactrae*, and the mortalities of adults were 89.31% – 100%, when they were subjected to the toxic film for 8 hours. Diafenthiuron, avermectins and spinosad had the most significant effect on parasitism capacity of adults of *T. bactrae*, when they were subjected to the toxic film for 1 hours. Chlorfenapy and fipronil were harmful to egg and larva when the parasitized host eggs at different developmental stages (egg, larva, prepupa, and pupa) of *T. bactrae* were dipped in the insecticidal solutions. The eclosion rate of adults were reduced significantly. However, cartap had an adverse effect on the *T. bactrae* and resulted in a low emergence rate of nearly 0 on every treated stages. Based on above results, chlorfluazuron, indoxacarb, Bt and tebufenozide were considered safe to *T. bactrae*, suggesting that these insecticides are compatible to this parasitoid when being used for control of *P. xylostella*.

Key words pesticides, Plutella xylostella, Trichogrammatoidea bactrae, effect

摘 要 在实验室条件下测定田间常用的 11 种杀虫剂对小菜蛾 Plutella xylostella (L.) 卵寄生性天敌卷蛾分索赤眼蜂 Trichogrammatoidea bactrae Nagaraja 的影响。结果表明 高效氯氰菊酯、丁醚脲、阿维菌素、多杀霉素、溴虫腈、氟虫腈和杀螟丹对卷蛾分索赤眼蜂成蜂有极明显触杀毒性 成蜂接触药膜 8 h 后的死亡率达到 89.31%~100% ,丁醚脲、阿维菌素和多杀霉素能极显著降低成蜂的寄生力 ,溴虫腈和氟虫腈处理卵和幼虫期均显著降低卷蛾分索赤眼的成蜂羽化率 ,杀螟丹对卷蛾分索赤眼蜂各虫态都有极强的毒性 ,其处理后成蜂的羽化率几乎都为 0。试验结果说明 ,氟啶脲、茚虫威、苏云金杆菌和虫酰肼对卷蛾分索赤眼蜂成蜂及各发育虫态均较安全 ,可在田间任何时候使用 ,而高效氯氰菊酯、丁醚脲、多杀霉素和阿维菌素的使用则应尽量避开卷蛾分索赤眼蜂成蜂期。

关键词 杀虫剂,小菜蛾,卷蛾分索赤眼蜂,影响

小菜蛾 Plutella xylostella (L.)是十字花科蔬菜上的一种重要害虫,分布在热带和亚热带的南亚、东南亚及中国南部地区,近年来已成为蔬菜生产上的毁灭性害虫[1]。据估计,全世界每年由于小菜蛾为害造成的经济损失达 10 亿美元,蔬菜损失达 4.0×107吨[2]。施用杀虫剂

一直是防治小菜蛾的主要手段^[3],但杀虫剂只能降低虫口密度,不能根治,长时间应用还会引

^{*} 资助项目:农业公益性行业专项(2008030001)及国家自然 科学基金(30871677)。

^{**}通讯作者 ,E-mail: yrhe@ scau. edu. cn 收稿日期:2009-06-20 ,修回日期:2009-07-15

起三"R"等问题。因此,充分利用和发挥天敌 对害虫的有效控制效果是小菜蛾综合防治中的 重要组成部分。

卷蛾分索赤眼蜂 Trichogrammatoidea bactrae Nagaraja 属赤眼蜂科 Trichogrammatidae ,分索赤眼蜂属 Trichogrammatoidea ,是鳞翅目害虫重要的卵期寄生蜂。近年来,在一些实验室进行的寄生小菜蛾卵的寄生蜂种类的筛选实验中,卷蛾分索赤眼蜂表现出对小菜蛾卵较强的选择性,认为该蜂对小菜蛾有较大的控制潜能,是防治小菜蛾的适宜蜂种[4~7]。

在综合防治过程中,杀虫剂的不合理使用 在杀死害虫的同时也可能会杀伤天敌 降低天 敌的自然控害作用。以往有关杀虫剂对赤眼蜂 安全性的研究多有报道 加吴长兴等报道 毒死 蜱和甲氰菊酯对欧洲玉米螟赤眼蜂的预蛹期都 为极高风险性,毒死蜱对欧洲玉米螟赤眼蜂和 玉米螟赤眼蜂的成蜂都为极高风险性, 甲氰菊 酯对欧洲玉米螟赤眼蜂和玉米螟赤眼蜂的成蜂 为中等风险性[8]。孙超等报道,昆虫生长调节 剂噻嗪酮、虫酰肼、呋喃虫酰肼对稻螟赤眼蜂没 有直接和间接的不利影响[9]。王昌松报道,松 毛虫赤眼蜂的不同发育阶段对杀虫剂的敏感性 不同 如溴氰菊酯对松毛虫赤眼蜂的杀伤力 在 卵、幼虫、蛹和成虫期分别为 10.6%、12.7%、 38.3%、78.8% [10]。陈永明等报道,甲胺磷处 理玉米螟赤眼蜂卵至蛹期各虫态 ,其蜂量减退 率分别为 55.7%、73.3%、32.7%、22.5% [11]。 但蔬菜田常用杀虫剂对卷蛾分索赤眼蜂影响的 研究还较少。本研究在前人研究的基础上,选 取卷蛾分索赤眼蜂为供试蜂种,测定和分析田 间常用杀虫剂对该赤眼蜂各虫态的影响,从而 为小菜蛾综合防治过程中合理使用杀虫剂、协 调化学防治和生物防治提供科学依据。

1 材料与方法

1.1 试验材料

1.1.1 供试寄主的获得 米蛾 Corcyra cephalonica (Stainton)由华南农业大学资源环境学院害虫生物防治实验室提供,在室内用含

水量 15% 的饲料(1:5的玉米粉:高筋小麦粉) 采用"木盒直接饲养法" [12] (木盒大小为 40 cm × 30 cm × 7 cm) 饲养,饲养条件为温度 26℃,相对湿度 70% ~ 80%,光周期 14 h 光照:10 h 黑暗。待卷蛾分索赤眼蜂羽化后,将事先收集到的米蛾卵制成大小为 4 cm × 2.5 cm、均匀粘有约3 000粒卵的卵卡,然后放在 30 W 的紫外灯下照射 1 h,供繁蜂所用,多余的卵卡用保鲜盒密封后放入 4℃冰箱中保存(可保存 3 d)。1.1.2 供试昆虫的饲养 卷蛾分索赤眼蜂蜂

1.1.2 供试昆虫的饲养 卷蛾分案亦眼蜂蜂种由华南农业大学资源环境学院害虫生物防治实验室提供,在光照培养箱中(温度 25℃ 相对湿度 70%~80%,光周期 14 h 光照: 10 h 黑暗,条件下同)以米蛾卵为寄主进行繁殖。具体步骤如下,待卷蛾分索赤眼蜂成蜂羽化后,用 2.5 cm×7.5 cm 的指型管分离(平均每管装蜂 100~200头),然后接入1张卵卡,并用小毛笔在指型管内壁上涂少许 25% 蜂蜜水供成蜂取食。寄生时间为 24 h,待成蜂羽化 4~6 h 后供测定用。

1.2 供试药剂

供试药剂均来自广东省农业科学院植保 所,供试浓度依据田间推荐剂量确定。各药剂 有效成分含量、供试浓度见表 1。

表 1 药剂及供试有效成分

供试药剂	供试有效	
供试约剂	成分* (mg/L)	
5% 氟啶脲(chlorfluazuron)EC	30	
5% 茚虫威(indoxacarb)EC	22. 5	
苏云金杆菌(Bacillus thuringienesis)	750	
10% 虫酰肼(tebufenozide)EC	200	
5% 高效氯氰菊酯(betacypermethrin)EC	22. 5	
20% 丁醚脲(diafenthiuron)EC	300	
2% 阿维菌素 (avermectins) EC	8. 1	
25g/L 多杀霉素(spinosad)SC	12. 5	
10% 溴虫腈(chlorfenapy)EC	50	
5% 氟虫腈(fipronil)EC	15	
98% 杀螟丹(cartap) WP	441	

^{*} 药剂在蔬菜上登记的防治小菜蛾的田间推荐有效成分 (数据来自中国农药信息网)。

1.3 试验方法

1.3.1 杀虫剂对卷蛾分索赤眼蜂成蜂的影响

(药膜法) 本研究采用自行设计的药膜法,每种供试药剂设 5 个重复,以清水为对照,每处理吸药液 1 mL 于 2.5 cm × 7.5 cm 的指型管中,对照组吸等量清水,然后迅速转动指型管,使药液均匀地涂于管内壁,立即将多余的药液倒出,指型管倒立,在室内自然风干后即成药膜管。每支药膜管接入羽化后 6 h 内的卷蛾分索赤眼蜂成蜂 60 头左右,用黑布封口后置于温度为25℃、RH 70%的光照培养箱中。处理 8 h 后检查各管成蜂数和死亡数(成蜂不能爬动记为死亡),计算死亡率。

按上述方法制成各药剂的药膜管,接入约20头羽化后6h内的卷蛾分索赤眼蜂雌蜂(经镜检),用黑布封口后置于光照培养箱中,1h后记录管中的活蜂数并提供卵卡供其寄生,24h后取出卵卡放入光照培养箱中,120h后检查每张卵卡被寄生的卵粒数,计算每雌平均寄生卵粒数。

1.3.2 杀虫剂对卷蛾分索赤眼蜂各虫态的间接影响(浸渍法) 参照孙超等报道的浸渍法 ^[9]。每个指型管接入羽化 4~6 h卷蛾分索赤眼蜂成蜂约 150 头,放入卵卡供其寄生 24 h后去除成蜂。寄生 24、48、96、144 h (相应的发育阶段为卵、幼虫、预蛹、蛹)后,将卵卡剪成小块(1 cm×0.5 cm),分别在供试药液中浸 5 s,取出晾干装入指型管中,用黑布封口后置于温度为 25℃、RH 70% 的光照培养箱中至成蜂羽化完毕 检查成蜂羽化数,计算羽化率。以清水为对照,每处理重复 5 次。

1.3.3 杀虫剂对卷蛾分索赤眼蜂的室内安全性评估 参照孙超等报道的关于杀虫剂对稻螟赤眼蜂安全性级别的划分标准^[91]。本研究将各药剂对卷蛾分索赤眼蜂的安全性级别标准划分如下: I 级(基本没有不利影响),成蜂死亡率或羽化降低率或每头雌蜂平均寄生卵粒数降低率(下同)小于等于 20%; II 级(有一定程度的不利影响),成蜂死亡率或羽化降低率为大于 20%小于等于 50%;II 级(比较明显的不利影响),成蜂死亡率或降低率为大于 50%小于等于 80%; IV 级(极明显的不利影响),成蜂死

亡率或降低率为大于80%小于等于100%。

1.4 数据处理

试验数据采用 EXCEL 办公软件和 DPS 数据处理系统软件进行统计,计算均值及标准误,均值差异显著性通过 Duncan 新复极差法进行多重分析比较。

2 结果与分析

2.1 杀虫剂对卷蛾分索赤眼蜂成蜂的影响

采用药膜法测定了 11 种杀虫剂对卷蛾分 索赤眼蜂成蜂存活和寄生力的影响,结果表明: 氟啶脲、茚虫威、苏云金杆菌和虫酰肼对卷蛾分 索赤眼蜂成蜂存活基本没有不利影响 8 h 后 成蜂的死亡率(0.12%~1.46%)与对照 (0.59%)差异不显著,而高效氯氰菊酯、丁醚 脲、阿维菌素、多杀霉素、溴虫腈、氟虫腈和杀螟 丹对卷蛾分索赤眼蜂成蜂存活有极明显的不利 影响 8 h 后成蜂的死亡率达 89.31% ~100%, 显著高于对照(表2);氟啶脲、茚虫威、苏云金 杆菌、虫酰肼和高效氯氰菊酯对卷蛾分索赤眼 蜂成蜂的寄生力基本没有不利影响,而丁醚脲、 阿维菌素、多杀霉素对卷蛾分索赤眼蜂成蜂的 寄生力有极明显的不利影响,每雌平均寄生卵 粒数(0~0.4 粒卵)显著低于对照(18.6 粒卵) (表2)。

表 2 杀虫剂对卷蛾分索赤眼蜂成蜂存活和寄生力的影响

处理	8 h 累计	每雌平均
	死亡率(%)	寄生卵粒数
对照	0. 59 ± 0. 21 c	18.6 ± 0.5 c
氟啶脲	$0.12 \pm 0.12c$	$19.~6\pm1.~1\rm bc$
茚虫威	$0.35 \pm 0.15c$	$21.8 \pm 1.2b$
苏云金杆菌	$0.61 \pm 0.17c$	$19.~8\pm0.~7\rm bc$
虫酰肼	$1.46 \pm 0.74c$	$21.\;6\pm1.\;2\mathrm{bc}$
高效氯氰菊酯	89. 31 \pm 5. 43b	28. 4 ± 2 . 1 a
丁醚脲	98. 49 ± 1. 01 a	$0.~0\pm0.~0\mathrm{d}$
阿维菌素	99. 02 \pm 0. 19a	$0.~0\pm0.~0\mathrm{d}$
多杀霉素	$100.00 \pm 0.00a$	$0.4 \pm 0.2 d$
溴虫腈	100. 00 \pm 0. 00 a	*
氟虫腈	$100.00 \pm 0.00 a$	*
杀螟丹	$100.00 \pm 0.00a$	*

注:同列数值后跟有相同小写字母者表示 5% 水平上差异不显著(下同)。"*"供试蜂全部死亡,未能进一步试验。

2.2 杀虫剂对卷蛾分索赤眼蜂各虫态的间接 影响

采用浸渍法测定了 11 种杀虫剂对卷蛾分索赤眼蜂各虫态的间接影响,结果表明:丁醚脲、高效氯氰菊酯、苏云金杆菌、虫酰肼、氟啶脲和茚虫威处理卷蛾分索赤眼蜂卵后,成蜂的羽化率(88.38%~94.71%)与对照(93.82%)差异不显著,而多杀霉素、阿维菌素、溴虫腈、氟虫腈和杀螟丹处理卷蛾分索赤眼蜂卵后,成蜂的羽化率为 0.24%~86.59%,显著低于对照(表3)。丁醚脲、高效氯氰菊酯、苏云金杆菌、虫酰肼、氟啶脲、茚虫威和多杀霉素处理卷蛾分索赤眼蜂 幼虫后,成蜂的羽化率(83.53%~95.49%)与对照(89.14%)差异不显著,而阿维菌素、溴虫腈、氟虫腈和杀螟丹处理卷蛾分索

赤眼蜂幼虫后,成蜂的羽化率为 0.00 ~ 70.73%,显著低于对照(表 3)。丁醚脲、高效氯氰菊酯、苏云金杆菌、虫酰肼、氟啶脲、茚虫威、阿维菌素、溴虫腈和氟虫腈处理卷蛾分索赤眼蜂预蛹后,成蜂的羽化率(92.66% ~ 96.87%)与对照(94.42%)差异不显著,而多杀霉素和杀螟丹处理卷蛾分索赤眼蜂预蛹后,成蜂的羽化率为 0.63% 和 90.87%,显著低于对照(表 3)。高效氯氰菊酯、苏云金杆菌、虫酰肼、氟啶脲、茚虫威、阿维菌素和溴虫腈处理卷蛾分索赤眼蜂蛹后,成蜂的羽化率(92.59% ~ 96.04%)与对照(95.46%)差异不显著,而丁醚脲、多杀霉素、氟虫腈和杀螟丹处理卷蛾分索赤眼蜂蛹后,成蜂的羽化率为 0.00 ~ 91.51%,显著低于对照(表 3)。

处理虫态	处理药剂				
处理虽态	90	幼虫	预蛹	蛹	
对照	93. 82 ± 0. 98ab	89. 14 ± 1.67 be	94. 42 ± 0. 59 abc	95. 46 ± 0. 76ab	
丁醚脲	94. 71 \pm 1. 03 a	$95.49 \pm 1.04a$	93. 46 ± 0.47 bed	$91.51 \pm 1.62c$	
高效氯氰菊酯	94. 35 \pm 1. 10ab	90. 94 \pm 0. 42 ab	93. 55 ± 0.96 bed	95. 13 \pm 0. 57 ab	
苏云金杆菌	93. 97 ± 1.58 ab	89. 81 \pm 1. 67 ab	96. 00 ± 0.72 ab	93. 80 ± 0.39 abc	
虫酰肼	93. 68 ± 1. 44 ab	91.61 ± 1.54 ab	94. 30 ± 1.41 abc	96. $04 \pm 1.02a$	
氟啶脲	90. 48 ± 1.49 abc	86.94 ± 1.26 be	95. 76 \pm 0. 34 ab	95. 83 \pm 0. 50a	
茚虫威	$88.38 \pm 1.33 \mathrm{bc}$	$83.53 \pm 1.65 \mathrm{c}$	96. 87 \pm 0. 59 a	95. $86 \pm 0.59a$	
多杀霉素	$86.59 \pm 1.16 \mathrm{cd}$	$88.85 \pm 2.21 \mathrm{bc}$	90. 87 \pm 0. 96 d	$87.30 \pm 1.44 \mathrm{d}$	
阿维菌素	$82.62 \pm 2.02 d$	$70.73 \pm 3.32 d$	93. 24 ± 0.33 bed	$92.59 \pm 1.32 \mathrm{bc}$	
溴虫腈	$43.28 \pm 4.72e$	$52.54 \pm 0.74e$	92. $66 \pm 1.64 \mathrm{cd}$	92. 96 ± 0. 94 abc	
氟虫腈	$5.17 \pm 1.87 f$	$6.23 \pm 3.92 f$	94. 26 \pm 0. 70 abc	$86.86 \pm 1.39 \mathrm{d}$	
杀螟丹	$0.24 \pm 0.20 f$	$0.00 \pm 0.00 \mathrm{g}$	$0.63 \pm 0.02e$	$0.00 \pm 0.00 e$	

表 3 杀虫剂处理卷蛾分索赤眼蜂各虫态对成蜂羽化率(%)的影响

2.3 杀虫剂对卷蛾分索赤眼蜂的室内安全性 评估

11 种杀虫剂对卷蛾分索赤眼蜂的室内安全性评估:氟啶脲、茚虫威、苏云金杆菌和虫酰肼对卷蛾分索赤眼蜂基本没有不利影响;高效氯氰菊酯对卷蛾分索赤眼蜂成蜂的存活有极明显的不利影响,对成蜂的寄生力和其他各虫态基本没有不利影响;丁醚脲、阿维菌素和多杀霉素对卷蛾分索赤眼蜂成蜂有极明显的不利影响,但对其他各虫态基本没有不利影响;溴虫腈和氟虫腈对卷蛾分索赤眼蜂成蜂、卵、幼虫有不同程度的不利影响(Ⅱ~Ⅳ),对预蛹和蛹基本

没有不利影响;杀螟丹对卷蛾分索赤眼蜂成蜂 和其他各虫态都有极明显的不利影响(表4)。

3 讨论

本研究的结果表明:氟啶脲、茚虫威、苏云金杆菌和虫酰肼对卷蛾分索赤眼蜂是安全的,它们对成蜂存活、寄生力及其他虫态均没有不利的影响,这与前人报道的结果相一致[13,14]。所以使用这几种药剂防治小菜蛾时,在任何时候都不会影响这种天敌自然控制作用的有效发挥。

高效氯氰菊酯、丁醚脲、阿维菌素和多杀霉

素触杀性很强,对卷蛾分索赤眼蜂成蜂的存活有极明显的不利影响,而对卵、幼虫、预蛹、蛹等虫态没有不利的影响,这可能与杀虫剂渗透卵壳的能力较弱有关。但高效氯氰菊酯对成蜂寄生力没有不利影响的原因尚不明确,有待进一步研究。

表 4 杀虫剂对卷蛾分索赤眼蜂的室内 安全性评估分级

AL TER	成	蜂	卵	幼虫	预蛹	蛹
处理 一	存活	寄生力		羽,	化	
氟啶脲	I	I	I	I	I	I
茚虫威	I	I	I	I	I	I
苏云金杆菌	I	I	I	I	I	I
虫酰肼	I	I	I	I	I	I
高效氯氰菊酯	IV	I	I	I	I	I
丁醚脲	IV	IV	I	I	I	I
阿维菌素	IV	IV	I	I	I	I
多杀霉素	IV	IV	I	I	I	I
溴虫腈	IV	*	Ш	II	I	I
氟虫腈	IV	*	IV	IV	I	I
杀螟丹	IV	*	IV	IV	IV	IV

I:基本没有不利影响;II:有一定程度的不利影响;III:比较明显的不利影响;IV:极明显的不利影响。"*"供试蜂全部死亡,未能进一步试验。

溴虫腈、氟虫腈对卷蛾分索赤眼蜂成蜂有极明显的不利影响,对卵和幼虫有不同程度的不利影响,而对预蛹和蛹没有不利的影响,这可能与预蛹和蛹的抗药性较强有关。杀螟丹对卷蛾分索赤眼蜂高毒,在田间防治小菜蛾时应注意减少单独使用的次数,并避免在卷蛾分索赤眼蜂种群数量较多时使用。

孙超等在室内通喷雾法和卵卡浸渍法分别测定了 50 mg/L 的氟虫腈对稻螟赤眼蜂成蜂、卵、幼虫、预蛹、蛹等虫态的影响以及对成蜂寄生力的影响,结果测得该杀虫剂对稻螟赤眼蜂成蜂、卵、幼虫、预蛹、蛹等虫态和成蜂寄生力均存在极明显的不利影响^[9],这与本研究的结果存在差异。除供试药剂浓度和寄主不同外,2种赤眼蜂预蛹和蛹对该药剂抗性不同可能也是这种差异产生的原因。

本研究仅在室内测定了各种杀虫剂对卷蛾 分索赤眼蜂的影响,由于该蜂在田间接触药剂 的量及方式与室内存在差异,环境条件也与室 内不同,因此,还需进行相应的田间的试验,从 而更加准确的评价这些田间常用杀虫剂对卷蛾 分索赤眼蜂的影响。

参 考 文 献

- Talekar N. S. , Shelton A. M. Biology , ecology , and management of the diamondback moth. Annu. Rev. Entomol. , 1993 , 38: 275 ~ 301.
- 2 Javier E. Q. Foreword of proceedings of the second international workshop. Taiwan: In: Talekar N. S., (ed.). Diamondback Moth and Other Crucifer Pests. Proceedings of the Second International Workshop. Taiwan: Asian Vegetable Research and Development Center. 1992. 1.
- 3 罗雁婕 吴文伟 杨祚斌,等. 小菜蛾抗药性及治理的研究 进展. 云南大学学报(自然科学版),2008,30(S1):178 ~182.
- 4 Guo M. F., Zhu D. F., Li L. Y. Selection of *Trichogramma* species for controlling the diamondback moth, *Plutella xylostella*. *Entomol. Sin.*, 1999, **6** (2): 187~192.
- 5 Klemm U. Selection of effective species or strains of Trichogramma egg parasitoids of diamondback moth. In: Talekar. Management of Diamond Back and Other Crucifer Pests: Proceedings of the Second International Workshop. Asian Vegetable Research and Development Center, Shanhua, Taiwan, China, 1992. 317 ~ 323.
- 6 Vasquez L. A., Shelton A. M., Hoffmann M. P. Laboratory evaluation of commercial Trichogrammatidae products for potential use against *Plutella xylostella*. Biol. Contr., 1997, 9(2): 143 ~ 148.
- Wuhrer B. G. , Hassan S. A. Selection of effective species/ strains of *Trichogramma* to control the diamondback moth Plutella xylostella. J. Appl. Entomol. ,1993 ,116 (1): 80
- 8 吴长兴,王强,赵学平等. 毒死蜱和甲氰菊酯对赤眼蜂毒性与安全评价. 农药 2008,47(2):125~127.
- 9 孙超,苏建亚,沈晋良等.杀虫剂对二化螟卵寄生性天敌稻螟赤眼蜂室内安全性评价.中国水稻科学,2008,22 (1):93~98.
- 10 王昌松. 几种杀虫剂对不同发育期松毛虫赤眼蜂的影响. 浙江林学院学报, 1987, 4(2): 138~139.
- 11 陈永明,傅达昌,黄佩忠等.棉田四种常用杀虫剂对玉米螟赤眼蜂不同虫态的杀伤力.昆虫知识,1994,**31**(6):330~332.
- 12 邱式邦,田毓起,周伟儒等.改进米蛾饲养技术的研究.植物保护学报,1980,7(3):153~158.
- 13 张桂芬,竹内傅昭,平井一男.三种杀虫剂对稻螟赤眼蜂种群增长的影响.植物保护学报,1997,24 (2):164~168.
- 14 郭慧芳,方继朝,刘成社,等. 虫酰肼对水稻二化螟的拒食、致死作用及田间效果. 农药学学报 2001,3 (4):41~47.