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Abstract [Aim] To determine the sequence structure and spatiotemporal expression patterns of four key insulin signaling
pathway genes in Propylea japonica. [Methods] The E(sev)2B, TOR, PDK1 and PI3K genes were identified in the genome
of P. japonica and their coded amino sequences and functional domain locations analyzed. Expression profiles of these genes
in different developmental stages (1st, 3rd, 5th and 7th day after eclosion) and tissues (head, thorax, abdomen and gut) were

investigated using real-time quantitative PCR. [Results] Expression levels of all four genes peaked on the 7th day after adult
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emergence. Expression levels of the E(sev)2B and PI3K genes were significantly higher in the gut than in the head, thorax and

abdomen on the 1Ist, 3rd and 5th day after emergence (P < 0.05). Expression levels of the TOR gene in the thorax, abdomen and

gut were significantly higher than in the head on the 1st day after emergence (P < 0.05). Expression of the PDK1 gene was

highest in the gut on the 3rd and 5th day after emergence, significantly higher than in the head, thorax and abdomen (P < 0.05).

[Conclusion] Expression patterns of the E(sev)2B, TOR, PDK1 and PI3K genes differed in different developmental stages

and tissues of P. japonica. This finding lays a foundation for further research on the role of the insulin signaling pathway in the

reproductive development of this species.

Key words Propylea japonica; insulin signaling pathway; spatiotemporal expression pattern; qRT-PCR;
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Tablel Primersused for gRT-PCR

5|¥14 % Primer name

#5149 (5'-3") Forward primer (5'-3")

TUE514 (5'-3") Reverse primer (5'-3")

E(sev)2B CAAGGTACTACGACGCACAAGG TGGAAACTGAGGATGTACGGTGGTA
MTOR GCTATGGTAGACGGAATACGCTTGG CCTTGGAGTGTCGATCCTGGCTAT
PDK1 CCCTCCGTCCAAATCTGAAGTTGAA CCTCTCCTCAATCTCCTCCTGACTG
PIK3 AGATGCGACCACTTTGGATTGTCTT CTGTCGGAGATCGTCACCATTCTTG
RPS18 CGCTGGTGATTCCAGATAA GACGACCTACACCTTTGATG
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1 E(sev)2B., TOR. PDK1#1 PI3K {5745
Fig.1 Conserved domiansof E(sev)2B, TOR, PDK1 and PI3K

*k2 SEBFIIHHN
Table2 Amino acid sequence analysis

FEA Gene
X b 24 Comparison parameter

E(sev)2B TOR PDK1 PI3K
FEPIHCE (bp) 636 7182 1 455 2109
Gene length (bp)
G S H 211 2393 484 702
Number of encoded amino acids
s ¥ (kD) 24.55 274.1 56.28 80.30
Molecular weight (kD)
£ 15 Tsoelectric point 5.72 7.76 6.76 8.59
R E R G & B Glu: SeE R Leu: SRR Leu: 9.0%  ZZ4R Leu:

Maximum amino acid content 9.0% 13.0% HHEMR Lys: 9.0% 12.4%




434 WRia 87 55 (S0 U B 28 A5 1 0% DU A T B LR P B 254 5 i s SRR A - 797 -

43R 2 (Table 2 continued)

) HA Gene
%t H 2% Comparison parameter

E(sev)2B TOR PDK1 PI3K
T HL A B 33 285 69 82
Total negatively charged residues (Asp + Glu)
BT H i ak L 26 285 67 91
Total positive charge residue (Arg + Lys)
N sy 2 LR A Met HEAM Met HAM Met HEAM Met
N-terminal amino acids
EARCEEY (h) 30 30 30 30
Protein half-life (h)
N Vel ri 38.26 44.43 42.15 35.98
Instability index
e 5 T SR R 5L 74.83 97.81 84.17 95.67
Aliphatic amino acid index
I SRR - 0.56 -0.229 - 0.481 - 0.206

Total average hydrophilicity
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H Tenebrio molitor —Z 44 91.00% (K 3) o
LU H TOR JE A 543 H B ik H TOR 2
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Agrilus planipennis  li3
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Asbolus verrucosus
Tribolium castaneum
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Agrilus planipennis
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2 AYIIHSHEHMER E(sev)2B WRERF 53t
Fig. 2 Amino acid sequence aligment of E(sev)2B from Propylea japonica and other insects

Propylea japonica: fa2(IH, OK482672; Asholusverrucosus: YHIRIEIEH, RZC37049.1; Tribolium castaneum: 7RI,
XP_969998.1; Absconditaterminalis: 1#Eim B, KAF5269566.1; Agrilusplanipennis: FIB%E75 T, XP_018325509.1.
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Asbolus verrucosus
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2032 VI GKTYNFLLKGHEDLRODERWOLFGLVNTL KDPDTIFRENLTIQRYAV I PLETNSGL | GREPHCDTLHTL IRDYRDKKK | peAA
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{ LLWLKSPSSEVHFDRRTNYTRSLAVMS{JVGY |LGLGDRHPSNLMLORL jpe22Z2at
{LLWLKSPSSEVWFDRRTNYTRSLAVMS, VGY | LGLGDRHPSNLNLORL 23]
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Leptinotarsa decemlineata 2242 THSIRIRATIGEE IR NAMEVT’FIEGTYRRTCESVL*RNKDSLMAVLEAFVYDPLLNWR IKNR 2331
Tribolium castaneum PPALYCK |LH I DFGDCFEVANTREKFPEK | PFRLTRH NAMEVT’UEGTYRRTCESV RNKDSLMAVLEAFVYDPLLNHR 2305
Tenebrio molitor WP AWA K | LI OF GDCFEVANTREKFPEK | PFRLTRM NAMEVTEIEGTYRRTCESVLIRNKDSLMAVLEAFVYDPLLNWR b IEVRNL 2301

3 Ay IHEHMYF TOR K PI3_PI4RFEHIERF 5 LY

Fig. 3 Amino acid sequence aligment of PI3_PI4 of TOR from Propyle japonica and other insects

Propylea japonica: fa2(BlH, OK482671; Asholusverrucosus: VP2 H , RZC37432.1; Leptinotarsa decemlineata:
LEAEH i XP 023015005.1; Tribolium castaneum: RIS %, XP971819.1; Tenebrio molitor: FAH , AKB11618.1.
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Fig. 4 Amino acid sequence aligment of PDK 1 from Propyle japonica and other insects

Propyleajaponica: fa2UlH, OK482674; Triboliumcagtaneum: ZRIUATHS, XP_015833394.1; Anoplophora glabripennis: 6
JEERA, XP_018574845.1; Aethina tumida: M5/ 1, XP_019867885.1; Agrilus planipennis: P2 T, XP 018333405.1.

RERIEFRY (Bl 6) , Uil PI3K 5H AL
WMEHRRABAE . BEERF . XL
Stophilus oryzae %7 PI3K %% X2k, Hrh
5 0R AU Hs AE oAb TR IR e SR 2O R I
I, REBNFE S,

2.3 E(sev)2B, TOR, PDK1 # PI3K ERE Atz
ik

E(sev)2B F1 PI3K FL A ) Rk K F-AEFLEL
IR PSS 1, 3. 5 R 7 RIEIRESET

Mg bR, PDKL I TOR J P76 i H
fR5 1 KBS 3 KEBAKFEZW LT, 55
K E T, MHEREIEAEA -,
E(sev)2B, TOR, PDKZ1 #il PI3K 3k K47 i
PUEES 5 RENE 7 KREXKF-SRITHE, JFE
R EARE (B7) .

2.4 E(sev)2B. TOR, PDK1 #1 PI3K EEALA
RIESH

WHPE T F13 K, E(sev)2B R A7 3k |
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Fig.5 Amino acid sequence aligment of PI3K from Propylea japonica and other insects

Propyleajaponica: 20, OK482673; Agrilusplanipennis: FI5%E T, XP_018318828.1; Cryptotermessecundus: HEfb
FISUE , XP_033610950.1 ; Photinus pyralis: #%:k 41, XP_031350105.1 ; Zootermopsis nevadens's: PIAEATT I, XP_021917067.1

W FIE AR h R EEAR —F, HAESE 1.3 5
RIEM R 2E 5 T3k MRS (P <
0.05) . E(sev)2B TERLHPIMLINEE 7 K, K
KirwdEm Tk, B REREE (P <
0.05) (18: A) .
WCRPMEES 1 KJ5, TOR 3 [RI7E i 33k
KV, BERE TR, BRETHERE (P <
0.05) , TERFPRIBATHRM. FE5 3 M7 XK,
SRR K iem, BE ST, EHAg
REREKFE (P<0.05) o 5 5 KAELI . IEHR
FikK Vi, W& m TR &L (P
<0.05) (KI8: B) .
BORPESS | KJ5, PDKL JERTE LR
RIKV- e, 3 TR AT (P <0.05 ),

W T, HRBRI B E K (P>0.05) . 76
55 3 M5 REEM h R EKTim, BTk
MaFIE (P <0.05) o 55 7 RAEMERFR IR AT
L BEE Tk A (P<0.05) (K8: C).

BRI 1, 3, 517 K5, PISK ZH
Biteprh Rk i, M EE Tk M
JEH (P<0.05) (Kl 8: D).,

3 itig

FEA o ATt s sl B(sev)2B 5 AZE
Jelift Tegillarca granosa FlI3CHY Meretrix
meretrix AR GRB £45#)—%L ( Cheng
etal., 1998; FEIMHES, 2013 FHEHIS, 2015),
FH E(sev)2B SR TESELH LB ST 5 fa 80k
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A 54 Propylea japonica B
ﬂEAsbolus Verrucosus 100 Sitophilus oryzae
60 Tribolium castaneum Diabrotica virgifera virgifera
0 83 Agrilus planipennis Leptinotarsa decemlineata
{Photinus pyralis Photinus pyralis
51 — Leptinotarsa decemlineata Anoplophora glabripennis
Sitophilus oryzae Zootermopsis nevadensis
49 Zootermopsis nevadensis 100 — Tribolium castaneum
21 — Cimex lectularius — Asbolus verrucosus
9 Athalia rosae japanensis 77— Tenebrio molitor
ELepwpiliﬂa heterotoma — Propylea japonica
Trichogramma pretiosum Agrilus planipennis
Contarinia nasturtii
C 100 Propylea japonica D
68 — 1 Diabrotica virgifera virgifera 97 Anoplophora glabripennis

27 ﬂ: Leptinotarsa decemlineata Sitophilus oryzae

Aethina tumida Tribolium castaneum
23 100—— Tribolium castaneum Propylea japonica
—— Agrilus planipennis Agrilus planipennis

Onthophagus taurus
Thrips palmi

Melanaphis sacchari
31— Acyrthosiphon pisum

Asbolus verrucosus
44— Anoplophora glabripennis
“—— Athalia rosae japanensis;

425: Schistocerca gregaria
8

Aphis gossypii L— Myzus per.sicae .
45 Sitophilus oryzae 67— Rhopalosiphum maidis
4@ Myzus persicae L Aphis gossypii

Melanaphis sacchari

El6 fauZifiSHMER E(sev)2B (A). TOR(B), PDK1 (C)#1 PI3K (D)W R FFHL DT
Fig. 6 Phylogenetic relationship of E(sev)2B (A), TOR (B), PDK1(C) and PI3K (D) from
Propyle japonica and other insects

E(sev)2B: Propyleajaponica: o203, OK482672; Asbolusverrucosus: VHEERFEF, RZC37049.1;
Tribolium castaneum: FRIUAHE, XP 969998.1; Agrilus planipennis: #7535 T, XP_018325509.1;
Photinus pyralis: # J 1t , XP_031355471.1; Leptinotarsa decemlineata: 422 Fi i, XP 023018933.1; Sitophilus oryzae:
K4, XP030760624.1; Zootermopsis nevadensis: NAEIATH I, XP 021934064.1; Cimex lectularius: i & i,
XP 014243826.1; Athaliarosae japanensis: ##SEMH 1, XP 012269666.1; Leptopilina heterotoma: I8 /NG 8L
XP 043471046.1; Trichogramma pretiosum: 5% 7RkIRH%E, XP 014235004.1; Contarinia nasturtii :
H#EE, XP031641195.1.TOR: Stophilusoryzae: X%, XP030750054.1; Diabroticavirgiferavirgifera: F KR
IH, XP028145210.1; Leptinotarsa decemlineata: 442 H i, XP 023015005.1; Photinus pyralis: %k d, XP
031352545.1; Anoplophora glabripennis: St £ K4, XP018572076.1; Zootermopsis nevadensis: P4k I, XP
021941476.1; Tribolium castaneum: #RIU4F %5, XP 971819.1; Asbolus verrucosus: Vhisiig B, RZC37432.1; Tenebrio
molitor: ##yH, AKB11618.1; Propyleajaponica: fE4rZLH, OK482671; Agrilusplanipennis: 5% 7% 1, XP
025831250.1; PDK1: Propyleajaponica: fas(BlH, OK482674; Diabrotica virgiferavirgifera: T kHREHH, XP
028128946.1; Leptinotarsa decemlineata: 442 F Ht, XP 023025583.1; Aethina tumida: #5i/NF HL, XP 019867885.1;
Tribolium castaneum: 7R U4 %5, XP 015833394.1; Agrilus planipennis: 11575 3 T, XP 018333405.1 ; Asbolus verrucosus:
VHUERE R ) RZC33499.1; Anoplophora glabripennis: /8 2 K4, XP018574845.1; Athaliarosae japanensis: #i#l
e,  XP012267983.1; Schistocerca gregaria: ¥biEME, QVD39211.1 ; Aphisgossypii: #iif, XP027845111.1;
Stophilus oryzae: K%, XP 030760856.1; Myzuspersicae: ki, XP 022174736.1; Melanaphis sacchari: =557,
XP 025194034.1; PI3K: Anoplophora glabripennis: Jt/E 2 K4, XP018567528.1; Stophilusoryzae: K%, XP
030764147.1; Tribolium castaneum: 77 145 %5 , EFA09848.2 ; Propyl ea japonica: fi, 20 5l 1 , 0K 482673 ; Agrilus planipennis:
H%E 3 T, XP 018318828.1; Onthophagus taurus: BEH, XP 022907614.1; Thrips palmi: F#HE#] 5, XP 018567528.1;
Melanaphis sacchari: =%:4F, XP 025192751.1; Acyrthosiphon pisum: #i5 4, XP 001946655.2; Myzus persicae: #k
1, XP022177349.1; Rhopalosiphum maidis: E K445, XP_026809249.1; Aphisgossypii: #ilF, XP 027850704.1.
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Fig. 7 Therelative expression levels of E(sev)2B (A), TOR (B), PDK1 (C) and PI3K (D) in different
developmental stages of Propylea japonica

PR R I (bR o A AR TR AN A K 5 W B [N R aA 1 22 57k 0k 3

(P<0.05, Duncan [BFIEM2ETL) 5 XHiH 1, 3, S 70 BIRPLESE 1.

3. 587 K, TFEIFE,

Data in the figure are mean +SE. Different letters above bars indicate significant difference in the gene expression level
between different developmental stages (P<0.05, Duncan’s new multiple range method). 1, 3, 5 and 7 in the X-axis represent
the 1st, 3rd, 5th and 7th day after eclosion, respectively. The same below.
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Fig. 8 Therelative expression levels of E(sev)2B (A), TOR (B), PDK1 (C) and PIK3 (D) in
different developmental stages and tissues of Propylea japonica
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i TOR AT 5 A Kl Sogatella furcifera,
PR A DL Pinctada martensi i1 A & B % #F
Fenneropenaeus chinensis i) TOR 45# AL ( #h
kL, 2010; HFEFISE, 2014; XBEE, 2018) ;
PDKI1 & ¥ 4 4 A1 v & B0 e o0 B A 5 240
Delia antiqua FIA AR IE 8 396 2 MR 1 45
F3k PKe_F1 PH_3 ( B JJ4%, 20145 JUIIMAE,
2017) ;5 PI3K ¥4 431 & SR A SCHE HL 5 5 A Fll
o E B X IR PIBK #5473 A4S AH [R] 19 45 #4 3k
PI3K-rbd. PI3Ka il PI3Kc ( R4, 2011; &
Ho2r, 2012) . fa g Bl R g A A
E(sev)2B. TOR. PDK1 Fl PIK3 7£A[R#)Fi ]
Z H T 5 LR S R G AR o B 2 SRR B T
[ S 2 A TE B LA s PR

i I3 A 51 [ O BESE ] E(sev)2B, TOR,
PDK1 Fll PIK3 J[H7F 803l UM U] & & i
WA A, HAESE 7 RARBKFE B E 5 T8
1. 3F15 K, @40 1-5 d o080k b i % 3
LD S Bl A P AL B IOk BT, RS S R
B B B8 S0 IR B R, BT R0, 24
FESS 10 KAk 2/~ Op e (BT ISR, 2021) .
AHHGE X 4 A~ FE R34 7 f SO HUME PR 7
RFTRIKF- T2 i, 2RI fa sl U
77 BRI A AT i T AT, A 4 A FE
IR & B e m A T i R A5 5 =00
CA MRS ZN 206G S RER KR
& LR O R AR IR R R B, E(sev)2B,
TOR, PDK1 Fl PIK3 1k i R A5 5l i 1 %
FRILIN, AT K . S AAME (XH,
2008; Belov and Mohammadi, 2012; Das and
Arur, 2017; W&#k, 2018 ) o #5306 35 [R5 4of
PAPE A AR | BEE RN A AR T e SO e

HAFRAKTZE R BIR , E(sev)2B  [H7E 1L
HOPMEES 1. 3 F1 5 K| PISK JE RIFE B PR 2
1. 3. 5H17 KL\ PDKL KEPILE i du Pk s 3
5 R 3k KF3 2 m T 3k L M RE A
FFeik i, M sT W PDKL 3 R JE ¥ B dud
Jio IR FNAL I B S F (Panetal., 2018)
B AUpE BAA B, 23 2 uiE e . Mk

YA SCE SR AR AT, TR PR TR AR R
— 28 WE IR TR R R B A (P44, 2015
SRARTEAE, 2017 ) o HEMIGK 3 F i PR ik P8 45 1
TE W SRR B R o ) R A A 5

AW AT E(sev)2B. PI3K FI PDK1
FRFIRE DAL, TORFEFFEALHOPILES 3.
5H1 7 KRFAEERL, X5AT CEME R
FIEFSE ( Zhou et al., 2010; XPEE, 2018) Xt
AR —5 B A S R B A B A BRI Bl Y
BURE , BLAT KA B P 283 1 3R 0 RS il P 43 DA LA
Kt & 5IH s S 270, Bk &0 R 5
G SRR A EEEM (PP, 2014),
e TOR ARA7 ] fig 38 2k 42 il f SCE A AP SR 3R
BUE SR BT LA AR B A s 1 FLAE T . SR,
TOR JE K7 W HOPIAR SRS 1 RKAE M & i v s
B EPAARIERE . A/ DI R TOR %R
HAEFE AR ERT, an7Eds KEL Nilaparvata
lugens F13% J {7 i5C Aedes aegypti H' TOR i 3 /)
5 Vg 23Rk P55 258 J1( Hansen et al., 2004;
Attardo et al., 2005; Zhai et al., 2015) . #kim
MET REUKHE TOR SEHVTERE , BRI
1. 3715 REYIIH L FHADE (XEEE, 2018) ,
REASHEN TOR SERZE UL 1| REEMT . JE
Fg v 35 %) 15 838 1T BE ) 3Pk Al AR Bl R
Gra it — KB A K,

ARG L BT RS R AF SR 4 A%
BT Z54 , D i e sriil k&
SRR RIA LB 25 Rk, it — B R
5 Tl RTEASUINR AR LT UL
MIVE a1 ALl

4 Zig

[ 5 2205 53 [ A L [N E(sev)2B. TOR,
PDK1 il PI3K 7 f ol A R[] & B I
Ak, BEPMLRSE 7 RIYREKT-BE T
B, 35 KR,

E(sev)2B. TOR. PDK1 FiI PI3K & fa 808
W AN TR AN R 41 2 ek K PAF R 22 5
PI3K JEHTE 4 A& B WA bR IA K 8
ERETk . BORER R
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