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EPG 波形智能识别分析研究进展* 
吴莉莉 1**  曾凡康 1  邢玉清 1  李文强 1  李静静 2  何海芳 2  闫凤鸣 2*** 

（1. 河南农业大学理学院，郑州 450002；2. 河南农业大学植物保护学院，郑州 450046） 

摘  要  刺吸电位技术（Electrical penetration graph，EPG）是一种用来记录植食性刺吸式昆虫在寄主植

物上取食行为的电生理技术。通过对 EPG 波形的分析，可以识别昆虫在植物不同组织中的取食行为。然

而，面对 EPG 波形数据中的噪声、不同类别波形之间的微小差异以及波形发生的确切时间，研究者需要

耗费大量时间和精力进行波形判读和标记。随着人工智能技术的发展，尤其是机器学习和深度学习的引入，

EPG 波形的高效识别与准确分析的自动化和智能化逐步变为现实。人工智能技术能够快速从大量复杂的

EPG 波形中提取出有用信息并识别出昆虫的具体取食行为，为 EPG 技术的智能化发展提供了技术支撑。

本文详述了到目前为止 EPG 波形自动识别和参数统计分析的研究进展，展望了未来 EPG 技术与人工智能

结合的应用前景，期望为 EPG 技术的智能化发展提供一些借鉴。 

关键词  EPG 技术；刺吸式昆虫；人工智能；波形自动识别和统计分析；机器学习；深度学习 

Advances in research on intelligent recognition and  
analysis of EPG waveforms 
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Abstract  Electrical penetration graph (EPG) technology is an electrophysiological technique used to record the probing and 

feeding behaviors of herbivorous, piercing-sucking insects. By analyzing EPG waveforms, it is possible to identify different 

feeding behaviors of insects within different plant tissues. However, because of noise in the EPG waveform data, subtle 

differences between different types of waveforms, and in the exact time when the waveforms occur, researchers need to spend 

a lot of time and effort to interpret waveform data. With the development of artificial intelligence technology, particularly the 

introduction of machine learning and deep learning, automation of recognition and accurate analysis of EPG waveforms has 

gradually become a reality. Artificial intelligence technology can quickly extract useful information from many complex EPG 

waveforms and identify the species-specific feeding behaviors of insects, thereby providing technical support for the 

intelligent development of EPG technology. This article elaborates on progress in research on the automatic recognition of 

EPG waveforms and associated statistical analysis, and outlines prospects for combining EPG technology with artificial 

intelligence and the intelligent development of EPG technology. 

Key words  electrical penetration graph technology; piercing-sucking insects; artificial intelligence technologies; automatic 

waveform recognition and statistical analysis; machine learning; deep learning 
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刺吸式口器昆虫是农林生产上的重要害虫

类别和 80%植物病毒的传播媒介（李静静等，

2019）。研究刺吸式昆虫在植物上的取食行为、

植物抗性机制以及昆虫传毒机制，是治理这类昆

虫及其所传播植物病毒病的基础（Wang et al.，

2023）。昆虫刺吸电位（Electrical penetration 

graph，EPG）技术是一种用于研究植食性刺吸式

口器昆虫在寄主植物上刺探和取食行为的电生

理仪器及其配套技术体系，是进行这些研究的有

力工具，在世界范围内有着广泛的应用（闫凤鸣

和王满囷，2017）。在利用 EPG 技术进行相关

研究时，需要正确识别 EPG 波形类别、判断各

个波形的发生时间并统计其持续时间，这些工作

一直以来基本都是靠人工进行的。传统的波形

识别分析方法很大程度上依赖于专家的经验和

人工判断，不仅耗时耗力，且难以应对大规模

数据的处理需求（Xing et al.，2023），这在很

大程度上限制了 EPG 技术的推广应用和作用的

发挥，因此研究 EPG 波形的自动识别分析显得

尤为重要。 

EPG 波形的自动识别可通过机器学习算法

快速准确地处理和分析 EPG 数据，不仅能大幅

提高效率，还可提升数据分析的客观性和准确

性。利用人工智能，研究人员可以从大量数据中

快速提取出有用信息，准确高效地分析刺吸式昆

虫的取食行为，为害虫管理和作物保护提供强大

的技术支持。本文在概述 EPG 技术原理、主要

波形特征及其生物学意义的基础上，对人工智能

在 EPG 波形自动识别分析方面的研究现状进行

总结和探讨，并对研发 EPG 波形自动识别系统

的工作前景进行了展望，期望为 EPG 技术的智

能化发展提供一些参考和思路。 

1  关于 EPG 波形识别 

EPG 技术是进行刺吸式昆虫取食行为、昆虫

与植物的关系、昆虫传毒机制、作物抗虫机制等

方面研究的重要手段，可为刺吸式昆虫的防控方

法研究及其所传播植物病毒的机理研究提供技

术支撑，目前已成功应用于蚜虫（刘伟娇，2021）、

粉虱（何文波，2014；Lu et al.，2017；范晓凡，

2023）、飞虱、叶蝉（岳双奇，2023）、蓟马和蝽

（张文丹，2022）等 50 多种昆虫的相关研究（李

静静等，2019）。EPG 技术通过昆虫取食时口针

刺穿植物组织所产生的电信号（即 EPG 波形）

实时监测和分析昆虫取食行为的不同阶段

（Cornara et al.，2018；Backus et al.，2019），

为研究昆虫与植物的相互关系提供技术支撑。 

1.1  EPG 波形产生基本原理 

EPG 的原型是美国科学家 McLean 和 Kinsey

（1964）设计的蚜虫取食监测系统，之后通过

Schaefers（1966）、Tjallingii（1978）、Backus

（2009，2019）等人对该系统的改进和优化，

最终形成了现在较为成熟和完善的 EPG 技术。

EPG 系统主要由可调电源、电阻、放大器、采

集卡和探头等部分组成，用导电银胶将昆虫粘

在直径为 10-20 μm 金属丝上，金属丝接入放大

器，昆虫、植物、土壤及电子元器件构成一个完

整的回路。当昆虫口针刺入植物组织中时，整个

回路就被接通（图 1）。当口针到达植物不同组

织层次时将产生不同的电势，这些变化的电压值

经采集卡转换为数字信号被计算机记录，以曲线

的形式呈现出来，即为 EPG 波形。 
 

 
 

图 1  吸电位仪原理图（Tjallingii，1988） 

Fig. 1  Electrical penetration instrument schematic 
diagram (Tjallingii，1988) 

 

在整个回路中，总电势 V 由电源电动势 Vs、

土壤与植物间的电势差 E、昆虫与植物间的电势

差 E三部分组成，即 sV V E E    。其中，Vs

是外接电源，幅值确定且大小可调；E 对于每组

实验是固定值； E是不确定的，昆虫口针刺探

到植物的不同组织， E取不同的幅值，从而使
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得测量电势 Vi（即 EPG 记录信号）发生变化。

也就是说昆虫与植物间电阻 Ra 发生了变化，引

起了记录值 Vi 的改变，即 i i i a( )V V R R R   ，

Ri 为放大器的输入阻抗，也是定值。最终记录的

电压信号 Vi 的大小由 i i a( )R R R 决定，选择合

适的输入阻抗也就决定了最终记录信号的比例

范围。 

1.2  EPG 波形的生物学意义 

正确识别 EPG 波形是研究刺吸式口器昆虫

取食行为的关键。EPG 技术最早应用于蚜虫取食

行为的研究，现阶段国内外对蚜虫的 EPG 波形

研究也最深入和广泛。蚜虫 EPG 波形典型且稳

定，不同蚜虫种类的 EPG 波形差异很小，是进

行其它类别昆虫 EPG 波形识别的重要参考。结

合透射电镜、同位素示踪、口针切割等技术，

已明确了蚜虫的 7 种基本波形及其生物学意义

（表 1）（闫凤鸣和王满囷，2017）。这 7 种波形

分别为 np 波（非刺探波，此时蚜虫口针未刺入植

物表皮内，波形几近直线）、C 波（路径波，包含

A 波和 B 波，在判读中一般将一些不能明确区分

的波也归入 C 波）、pd 波（细胞内刺探波）、E1

波（韧皮部分泌唾液波）、E2 波（韧皮部取食波）、

G 波（木质部取食波）和 F 波（机械障碍波）

（吴莉莉等，2019）。表 1 是蚜虫常见的 7 种 EPG

波形及其代表的生物学意义。图 2（A-C）为蚜

虫取食时的 EPG 波形，可作为识别各类波形的

参考样本（Walker et al.，2024）。 

EPG 波形的物理特性如幅度、频率、持续时

间和形状，都是昆虫与植物互动过程中生物活动

的直接体现。波形的幅度可反映昆虫口针穿透植

物细胞时的深度和力度，频率则可能反映昆虫取

食的速度和节奏，持续时间反映了昆虫一个取食

行为阶段的长度，而波形的形状则可以帮助区分

昆虫不同的行为模式（Dancewicz et al.，2021）。 

昆虫开始取食过程时，其口针刺穿植物表皮

进入内部组织，这一行为在 EPG 记录中形成特

定的波形。波形的类型和特征可以反映昆虫的取

食状态，包括探针行为、取食行为和间歇期。在

探针行为时，昆虫尝试刺穿植物表皮寻找适合取

食的位置时，EPG 波形呈现出不规则的波动；在

昆虫进行取食行为时，昆虫成功穿透植物表皮并

开始吸取营养液，EPG 波形则会显示为较为规则

和持续的模式（He et al.，2023）；而在间歇期，

昆虫可能会暂停取食行为（如调整身体位置、中

断口针探索等），这种行为变化在 EPG 波形中会

表现为波形的短暂中断或特征性改变。EPG 波形

不仅反映了蚜虫的取食阶段，还可提供关于蚜虫 
 

表 1  蚜虫的 7 种波形及生物学意义（闫凤鸣和王满囷，2017） 

Table 1  Seven waveforms of aphids and their biological significance (Yan and Wang，2017) 

阶段 
Stage 

波形 
Wave form

口针端部所处植物组织和部位 
The plant tissue and location at the tip  

of the needle mouth 

蚜虫取食行为 
Aphid feeding behavior 

刺探路径阶段 
Probing path  
stage 

A 表皮 Epidermis 刺探，分泌凝胶性唾液 
Probing and secreting gelling saliva 

B 表皮或叶肉组织  
Epidermis or mesophyll tissue 

分泌凝胶性唾液 
Secretion of gelling saliva 

C 叶肉细胞间隙或韧皮生活细胞内部 
Within the intercellular spaces of mesophyll 
cells or inside phloem parenchyma cells 

刺探 Stylet probing 

pd 生活细胞内部 Inside living cells 细胞内刺探 Intracellular probing 

F 所有组织，细胞外部  
All tissues, outside the cells 

口针的机械运动 
Mechanical movement of the stylet 

韧皮部阶段 
Phloem stage 

E1 韧皮部筛管分子 Phloem sieve tube elements 分泌水溶性唾液 Secretion of watery saliva

E2 韧皮部筛管分子 Phloem sieve tube elements 被动吸食 Passive ingestion 

木质部阶段 
Xylem stage 

G 木质部 Xylem 主动吸食 Active ingestion 
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图 2  蚜虫的刺吸电位波形示例（Walker et al.，2024） 

Fig. 2  Example of an aphid electrical penetration graph (EPG) recording (Walker et al., 2024) 

A. 带有标记的 120 min 蚜虫 EPG 波形；B. 刺探路径阶段的具体波形；C. 韧皮部阶段的具体波形。 

A. 120 min aphid EPG waveforms with markers; B. Specific waveforms in the pathway phase;  
C. Specific waveforms in the phloem phase. 

 

取食策略和偏好的重要信息（闫文静等，2024）。

例如，通过分析蚜虫在该植物品种上的 EPG 波

形可以评估该品种对蚜虫的抗性水平。 

1.3  EPG 波形识别分析的重点与难点 

EPG 技术目前在应用时面临着一些问题，例

如波形的自动识别和分析还未智能化，波形不稳

定，以及部分波形所对应的生物学意义尚不明确

等等。EPG 波形自动识别分析存在着诸如波形采

集时易受噪声干扰、波形复杂、分析指标多样等

问题和难点。  

1.3.1  波形的复杂多样  EPG 波形的复杂性是

自动识别和分析的首要挑战。每个波形都是一个

昆虫特定刺吸行为的电位记录，这些行为包括但

不限于刺探、穿透、取食等。不同的行为阶段会

产生不同的波形模式，而不同昆虫种类、刺吸目

标（如植物的不同部位）和外部环境条件（如温

度、湿度）的变化，都会对波形产生影响（Wu 

et al.，2022）。 

1.3.2  噪声的干扰  除了波形本身的复杂性，

EPG 数据中的噪声干扰也是 EPG 波形自动识别

分析的一个重要问题。噪声可能来源于实验设

备、昆虫的非目标活动，也可能是波形采集和传

输过程中的技术问题。EPG 波形属于生物弱信号

（吴莉莉等，2017），往往信号强度与噪声处于

同一个数量级，这使得从噪声中提取出有效的信

号存在一定的难度。这些噪声会干扰波形的清晰

度，影响特征提取的准确性。因此，在 EPG 波

形自动识别和分析前需要进行去噪处理。 

1.3.3  波形的相似性和差异性  在 EPG 常见的

波形中，有些极为相似，例如 G 波和 F 波。对

于不同的受试昆虫因个体差异，即使同类波形，

在幅值和频率上也会有差异。这些都增加了 EPG

波形自动识别分析的难度（吴莉莉等，2018）。

某些情况下，不同行为阶段产生的波形在视觉上

极为相似，只有细微的差别，而这些微小的差异

对于正确理解昆虫行为和其对植物的影响至关

重要。取代人工，由计算机自动准确地识别这些

差异，就需要复杂的机器学习算法和大量标记好

的数据进行训练。 

1.3.4  波形参数分析指标的多样化  在 EPG 波

形的分析中，不同的研究目的可能需要关注不同

的波形参数。例如，研究昆虫的取食行为会重点

分析波形的频率和持续时间，而评估植物对昆虫
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抗性的研究则更关注波形的形状和幅度（Wu 

et al.，2022）。这种精准的指标选择可以使研究

人员更准确地解读数据，但同时也增加了波形自

动识别系统设计的复杂性。以蚜虫的 3 个不同品

种在椪柑上的取食行为研究为例（何应琴等，

2015），这 3 种蚜虫在椪柑上的 EPG 参数反映了

不同的取食行为和生物学过程。此时，波形的频

率和持续时间通常用于分析昆虫的取食行为，因

为这些参数可以揭示昆虫在植物体内活动的时

间长短和活动的频繁程度。频率参数指示昆虫正

在积极探测或吸取植物的营养液，而持续时间参

数可能表示昆虫在特定位置上的持久取食。针对

不同的研究目的，EPG 自动识别系统要在正确判

读波形的基础上，给出合适的波形分析指标。 

2  人工智能在 EPG 波形识别分析

中的研究进展 

人工智能在 EPG 波形识别分析中的应用经

历了从经典机器学习到深度学习的演进。经典机

器学习算法在波形识别中的应用通常包括三个

核心步骤：一是对原始波形数据的预处理，二是

特征提取组建特征向量和训练测试样本集，三是

利用分类器算法对这些特征向量进行学习和分

类，从而识别出昆虫的不同取食阶段。其中对波

形的预处理包括滤波和去噪；特征提取会从不同

角度提取时域、频域等可以描述昆虫取食行为特

点的特征；波形识别常用的机器学习算法包括支

持向量机（Support vector machine，SVM）、决

策树（Decision tree，DT）、极限学习机（Extreme 

learning machine，ELM）和随机森林（Random 

forest，RF）等。 

2.1  经典机器学习在 EPG 波形识别中的应用 

目前，全球范围内已有多个研究团队运用人

工智能中的机器学习算法开展 EPG 波形识别的

研究工作。国外 Willett 教授领导的研究团队在

该领域取得了显著成就（Willett et al.，2016）。

国内闫凤鸣教授的研究团队（吴莉莉等，2018，

2019；Xing et al.，2023）也在 EPG 波形识别方

面取得了一定进展。这些团队的工作不仅推动了

EPG 波形识别技术的发展，也为相关学科的研究

提供了宝贵的经验和参考。 

Adasme-Carreño 等（2015）在 EPG 波形自

动识别方面做了开创性地研究，研发了一个现代

的跨平台功能齐全的 EPG 信号分析软件，即

A2EPG（Assisted analysis of electrical penetration 

graph）。图 3 展示了 A2EPG 软件的图形用户界

面，包括 EPG 信号的显示、已识别波形的标记

以及用户操作界面。该软件输入 EPG 仪器采集

的数据后，能快速地输出识别后的波形（np，C，

pd，G 和 E1）及统计各波段的持续时间。这些结

果可以很方便地由终端用户验证和处理，大大减

少了专门用于 EPG 波形识别分析所投入的时间。 

然而 A2EPG 的识别准确度不高，所能识别

的波形也有限，尤其对于 E1 和 E2 波几乎不能

区分，对其他波形（如 G 波、E1 波）会经常错

判为 C 波。其主要原因就是 A2EPG 的特征提取

和识别算法过于简单，仅提取了波形特征参数

（如频率、振幅和极值变化等），对于频域、时

频和非线性特征都未考虑，忽略了很多细节特

征。A2EPG 使用了二元分类法进行波形识别，

该方法相对于 SVM 和 RF 等机器学习算法在自

学习、非线性数据处理等方面能力稍弱。 

在利用机器学习算法来识别亚洲柑橘木虱

Diaphorina citri 的取食模式的过程中，Willett 等

（2016）先将原始的 EPG 数据通过快速傅里叶

变换（Fast fourier transform，FFT）从时域转换

到频域，用来提取频率特征。然后利用多种机器

学习算法，包括 RF、隐马尔可夫模型和聚类分

析来识别 EPG 波形，实验中利用训练好的 RF

模型在识别亚洲柑橘木虱不同取食状态时达到

了 97.4%的分类准确率。图 4 是该 RF 模型对昆

虫取食行为进行自动分类时的准确性，点和误差

条分别表示平均准确率和 95%置信区间。这表明

了 RF 模型在自动识别昆虫取食行为，特别是对

于在韧皮部的取食行为具有较高的准确性，也体

现了机器学习方法在 EPG 波形自动识别分析中

的应用潜力。图 5（A-C）是 Willett 等（2016）

使用隐马尔可夫模型从 EPG 数据中识别出的额

外取食状态。这表明机器学习有助于发现人类观

察可能遗漏的复杂取食行为。 
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图 3  刺吸电位图谱辅助分析系统的图形用户界面（Adasme-Carreño et al.，2015） 

Fig. 3  Graphical user interface of assisted analysis of electrical penetration graph (Adasme-Carreño et al., 2015) 

[1]是除去覆盖部分例如测量工具外，EPG 记录的主要波形显示界面；[2]是轮廓查看界面，可显示与波形匹配的 

所有信号段，其中每个信号段由不同颜色标记，对应的波形类别标签在最左侧。当选择一个片段时，[1]上会出现 

一个覆盖区域，代表对应的时间帧；[3]是主工具栏，包括快速访问大多数常用操作，如打开和保存文件以及启动 

扫描；[4]是导航面板，显示有关当前记录（“信息”选项卡）和其他加载文件（“信号”选项卡）的信息，还显示在

活动信号中标记的所有段的交互表（显示的“段”选项卡）；[5]是全景视图，可显示整个小时的完整记录，用粗的垂

直绿线表示当前显示的部分；最后，可在分段对话框[6]中编辑分段数据，如时间帧、相关波形和其他信息。 

[1] Main drawing canvas where the EPG record is displayed in addition to overlay elements such as measuring tools;  
[2] The profile viewer shows all the signal segments that were matched to a waveform, where each one of them is represented 
by a coloured mark along a waveform path (labels atthe left side). When a segment is selected, an overlay region appears on 

[1] enclosing the corresponding time frame; [3] The main toolbar includes quick access to mostcommon actions, such as 
opening and saving files and starting the scan; [4] The navigation panel shows information about the current record (Info tab) 

and other loaded files (Signals tab), and it also shows an interactive table of all the segments found in the active signal 
(Segments tab, shown); [5] The panoramic view gives an overall sight of an entire hour of a record, indicating the  

currently displayed section by a thick vertical green line; Finally, the segment data, such as the time frame,  
associated waveform andother information, can be edited using the segment dialog [6]. 

 

 
 

图 4  随机森林模型自动分类的准确性（Willett et al.，2016） 

Fig. 4  Accuracy of automatic classification by the random forest model (Willett et al., 2016) 
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图 5  使用隐马尔可夫模型额外识别出的阶段（Willett et al.，2016） 

Fig. 5  States additionally identified using the hidden markov model (Willett et al., 2016) 

A. 基于不同取食阶段不同隐马尔可夫（HMM）模型个数的贝叶斯信息准则（BIC）；B. 亚洲柑橘木虱在 

柑橘上取食 3.5 h 的 EPG 波形记录样本；C. 人眼观测对 B 样本的昆虫取食阶段进行逐秒的标注； 

D. 基于 8 个 HMM 模型标注的取食阶段。该模型解析了韧皮部取食阶段 E1 和 E2，这与人眼观测标注的一致， 

而且能够在人眼观测标注的 C 阶段[C 和 D 中的虚线框]内识别更多的取食阶段。 

A. Bayesian information criterion (BIC) for Hidden Markov Models（HMMs）of different numbers of feeding states;  

B. 3.5 h sample of electrical penetration graph recordings from Asian citrus psyllid on Carrizo citrange citrus;  
C. Human-annotated insect feeding states from visual inspection of B on a second by second basis; D. Feeding states 

recovered from an eight state hidden markov model. The model resolves phloem feeding states E1 and E2 in accordance with 
human annotation and recognizes more feeding states within the human annotated C feeding state [dashed box in C and D]. 

 

吴莉莉等（2018）以桃蚜 Myzus persicae 的

EPG 波形为研究对象，对 np 波、C 波、pd 波、

E1 波、E2 波、G 波和 F 波的特征提取和分类识

别进行了研究，提出了融合分形维数和希尔伯特-

黄变换（Hilbert-huang transform，HHT）的特征

提取方法，构建了基于决策树的分类器，通过对

4 组不同样本进行测试，得到了 91.43%的平均识

别率。与人工相比，机器识别的耗时仅为人工识

别的 1/46，极大地提高了工作效率。 

在 利 用 极 限 学 习 机 （ Extreme learning 

machine，ELM）进行蚜虫 EPG 波形识别的实验

中，吴莉莉等（2019）采用了小波变换、HHT

和极限学习机等算法对蚜虫 EPG 信号中 7 种波

形的特征提取和分类识别进行了研究。ELM 的

网络结构图如图 6 所示，由输入层、隐含层和输

出层组成，输入层与隐含层、隐含层与输出层间

的神经元采用全连接。ELM 作分类器时，隐含

层经元个数对分类效果影响较大。研究结果表

明，神经元个数并非越多越好，而且随着神经元

个数的增加，识别率呈下降趋势。采用由分形

盒维数、Hurst 指数、HHT 前两层谱质心、第

2-3 层低频小波能量组成的 6 维特征向量时，可

以获得最佳的识别效果，利用决策树分类器平均

识别率达到 91.61%，使用 ELM 分类器平均识别

率可达 93.57%，相比吴莉莉等（2018）研究提

高了 2.14%。 
 

 
 

图 6  极限学习机的网络结构图（吴莉莉等，2019） 

Fig. 6  Network architecture diagram of extreme  
learning machine (Wu et al., 2019) 
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为了进一步提高 EPG 波形识别率，Xing 等

（2023）利用小波核极限学习机作为分类器，采

用了与吴莉莉等（2018，2019）相同的训练样本

和测试样本，得到了 94.47%的识别率。 

上述经典机器学习算法在对 EPG 波形进行

识别时，需要完成特征提取和分类两个过程，尤

其是特征提取方法依赖于研究者对样本数据的

认知和经验，因此识别稳定性和适用性有限。随

着人工智能的发展，研究者开始考虑利用深度学

习算法自动提取特征来进行波形识别。  

2.2  深度学习在 EPG 波形识别中的应用 

深度学习作为机器学习的一个分支，在波形

识别中展现出了巨大的潜力。不同于经典的机器

学习，深度学习能够自动从原始数据中找到内在

关联，这使得其特别适合处理高维度和高复杂度

的数据（Zhang et al.，2018）。深度学习在语音、

心电等生物电信号的波形识别领域取得了丰硕

的成果。常用的深度学习模型有卷积神经网络

（Convolutional neural network，CNN）、循环神

经网络（Recurrent neural network，RNN）以及

它们的衍生模型，例如长短期记忆网络（Long 

short-term memory，LSTM）和门控循环单元

（Gated recurrent unit，GRU） （Purwins et al.，

2019）。这些深度学习模型能够自动从原始波形

数据中提取特征，无需手动设计或选择特征。例

如，在语音识别领域，深度学习模型通过学习大

量的语音样本，成功地识别出人类的语音指令或

对话内容。同样，在心电图（Electro cardio 

graphy，ECG）信号分析中，深度学习也能准确

地识别出心律失常等异常模式（Somani et al.，

2021），这对于早期诊断和治疗心脏疾病至关重

要。Cheng 等（2021）结合 DCNN 和 BiLSTM

模型对 ECG 信号进行了特征提取，并通过改进

的损失函数优化了 ECG 信号分类模型，这有效

提高了模型的识别分类准确率，该方法在 2017 

PhysioNet/CinC Challenge 提供的 ECG 数据集上

的表现突出。利用深度学习进行 EPG 波形的识

别研究才刚刚起步，吴莉莉等（2022）利用一维

卷积神经网络来识别桃蚜的 EPG 波形，采用的

波形识别框架如图 7 所示。实验中对桃蚜的 7 种

常见 EPG 波形：np、C、pd、E1、E2、G 和 F

波进行识别，通过调节卷积层数、卷积核大小、

学习率、批量块和迭代次数等，确定了最优的一

维 CNN网络参数，得到了 97.50%的平均识别率，

相比于前期采用极限学习机（吴莉莉等，2019）

的方法提高了 3.93%。 

虽然利用深度学习提高了波形识别率，但模

型的训练时长和网络参数均多于决策树、极限学

习机等传统分类器。后续研究可引入自适应调节

网络参数的方法，或者尝试采用 LSTM 等 RNN

衍生模型，进一步优化网络结构，减小耗时。 

3  EPG 波形参数统计分析的研究

进展 

EPG 作为一种评估昆虫取食行为的关键技

术，其波形的统计分析占有重要地位。目前，研

究者们广泛运用描述性统计分析、假设检验以及

方差分析等统计方法来处理 EPG 数据（Backus 

et al.，2007）。 

3.1  统计分析方法 

描述性统计分析提供了 EPG 波形数据的总

体概况，例如数据的平均值、标准差、最小值和

最大值等关键指标，使研究者能快速理解波形的

整体分布特征（Cervantes et al.，2016）。而假设

检验，如 t 检验和卡方（χ2）检验，主要用于判

断不同条件下昆虫取食行为的差异是否具有统

计学意义，这些方法是比较不同样本组间 EPG

波形参数差异的标准工具（Tao et al.，2024）。

当需要同时比较多个样本组的EPG波形数据时，

方差分析法（Analysis of variance，ANOVA）就

显得尤为适用，它能帮助确定不同取食行为之间

是否存在显著性差异（Fasusi et al.，2025）。 

在对 EPG 波形进行统计分析时，首先进行

描述性统计，包括计算波形特征的中心趋势（如

均值、中位数）和差异性（如标准差）。这些参

数能帮助识别出异常值或数据分布的特殊模式。

然后进行推断统计，比如利用 t 检验、ANOVA

或非参数统计方法比较不同样本组（如不同昆

虫、不同植物）之间的波形特征差异，目的是发 
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图 7  基于一维卷积神经网络的刺吸电位波形识别框架（吴莉莉等，2022） 

Fig. 7  Electrical penetration graph waveform recognition framework based  
on one-dimensional convolutional neural network (Wu et al., 2022) 

 
现哪些波形特征在统计学上可以显著区分不同

的生物学状态或实验条件（van Elst，2013）。 

在数据分析阶段解释分析结果背后的生物学

意义时需要应用到各种数据分析技术。这不仅要

对波形进行聚类分析，以便发现未被标注的、基

于波形特征的自然分组（Akuhara and Mochizuki，

2014）；还要进行主成分分析（Principal component 

analysis，PCA）来降低数据维度，同时尽可能

保留原始数据的异常信息（Yang et al.，2020）；

最后还要进行相关性分析来探究波形特征之

间的关系，以及它们与昆虫刺吸行为之间的内

在联系。 

3.2  研究进展 

EPG 波形统计分析经历了 Backus 1.0、Sarria 

Excel、EPG Calc 和 Ebert 1.0，这些软件的开发

反映了 EPG 数据分析方法从人工到半自动再到

全自动化的演进。 

Backus 1.0通过使用统计分析系统（Statistics 

analysis system，SAS）环境来处理和分析 EPG

数据，包括统计分析和参数计算，并且将 EPG

数据的统计分析标准化。Backus 1.0 的功能主要

体现在其对 EPG 数据的深入分析能力上，使研

究人员能够量化复杂的昆虫行为从而进行统计
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比较（Backus et al.，2007）。因此，Backus 1.0

不仅促进了 EPG 研究的标准化，还为研究昆虫

取食行为提供了有力的工具；但它仅适用于原始

记录的参数并且在某些方面可能仍需人工介入，

比如波形的识别、数据的预处理和分析参数的选

择等。 

Sarria Excel是一个基于Microsoft excel的工

作簿，可自动计算 EPG 数据的参数，简化了 EPG

数据的分析过程（Sarria et al.，2009）。这个工

作簿能够自动计算大量描述昆虫刺探和取食行

为的 EPG 参数，这些参数涵盖了昆虫-植物互作

以及病毒-昆虫介体互动的等方面。Sarria Excel

的优势在于输入的数据可以来自直流或交流的

EPG。它利用了 Excel 的功能自动计算大量 EPG

参数从而简化了数据的处理过程，然而它仍然需

要用户进行原始的波形识别和最终结果的解释，

这需要一定程度的人工操作。 

EPG Calc 是一款基于 PHP 的脚本工具，用

于自动计算 EPG 参数。这个工具可以自动化处

理 EPG 数据并且快速计算 100 多种不同的参数。

该软件提供了一个图形用户的网络界面，允许用

户上传 STYLET 软件的分析文件或兼容的 CSV

文本文件，输出文件可以直接用于不同的统计分

析软件（Giordanengo，2014）。与手动计算 EPG

参数相比，EPG Calc 大大减少了所需时间，并

避免了研究人员之间关于定义和计算方法的混

淆。尽管该软件编译了更多适用于蚜虫的衍生变

量，但并不包括统计分析。 

新的 SAS 程序 Ebert 1.0 利用混合模型

ANOVA 进行统计分析，通过模拟数据集的实际

分布来改进统计测试的效果，这克服了 EPG 数

据非正态分布的常见问题。而且 Ebert 1.0 不仅

适用于蚜虫和木虱等传统 EPG 研究对象，也能

够适应更广泛的昆虫种类（Ebert et al.，2015）。

更为重要的是该程序代码是开源的，因此研究者

可根据研究特定昆虫的行为特点来调整程序。尤

其对于大型实验和大量昆虫样本，这个程序非常

有价值。 

上述 4 个统计分析软件为昆虫取食行为的

研究提供了重要工具。Sarria Excel 通过 Excel

工作簿自动计算 EPG 参数，简化了分析过程。

而 EPG Calc 以 PHP 脚本形式进一步自动化参数

计算，提高了分析效率。Backus 1.0 和 Ebert 1.0

则分别在 SAS 环境中提供了更复杂的统计分析

功能，允许研究者更深入地探索 EPG 波形数据。 

4  人工智能赋能 EPG 技术应用展望 

随着技术的进步与创新，EPG 波形智能识

别分析迎来了前所未有的发展机遇。未来的研

究将不仅依赖现有的机器学习和深度学习技术，

还将整合更多创新技术来提升识别分析的精确

度和效率，并拓展其应用广度。 

在技术层面，深度学习已经在 EPG 波形识

别方面展现出巨大潜力，尤其是在自动提取复杂

数据中的高级特征方面。首先随着计算资源的增

强和算法的进一步优化，预计将有更多关于时间

序列数据处理的深度学习模型被开发出来，例如

对 LSTM 和 CNN 的改进，以及注意力机制和

Transformer 模型的应用。此外，未来 EPG 波形

自动识别技术的发展不仅依赖于计算机科学和

人工智能的进步，还需要生物学、生态学、物理

学等多学科知识的融合。例如，通过物理模型理

解和模拟昆虫与植物组织的相互作用，可以帮助

设计更精确的算法（Pearson et al.，2014）。其次，

新型算法和模型的创新应用也将为 EPG 波形自

动识别带来新的可能性。无监督学习和半监督学

习方法可能会被进一步探索，以解决有标签数据

稀缺的问题（孙立君，2021）。强化学习等技术

也可能在 EPG 波形分析中发挥作用，通过模拟

昆虫探索植物组织的过程来优化识别算法（朱培

坤等，2023）。 

在应用层面，EPG 技术的应用领域也在不断

扩展。除了传统的农业害虫管理和植物保护，该

技术在生态学研究、环境监测以及昆虫行为学的

新发现等领域的应用前景同样广阔。首先在农业

害虫管理与植物保护方面，EPG 技术的应用潜力

巨大。通过精确分析昆虫的取食行为和模式，研

究人员能够更准确地评估害虫对作物的潜在风

险，并据此制定出更为有效的防治策略（Backus 

et al.，2021）。其次在生态学和环境监测领域，
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利用 EPG 技术对特定区域内昆虫取食行为的持

续监测，研究人员能够对植物群落的健康状况进

行评估，并跟踪生态系统的变化趋势（Backus and 

Shih，2020）。例如，通过分析昆虫取食行为的

变化，可以间接地了解环境污染或气候变化对生

态系统的影响。最后在昆虫行为学研究中，EPG

波形自动识别技术提供了新的研究视角和工具。

通过深入分析昆虫的取食波形，研究人员可以更

深入地探究昆虫与植物之间的复杂互作机制，揭

示昆虫取食行为背后的生理和神经机制。这项技

术还能够帮助科学家研究昆虫在面对环境压力

（例如植物的防御机制、化学农药等）时的行为

适应和进化策略（Faiß and Stowell，2023）。随

着技术的不断发展，我们期待能够开发基于 AI

技术的更成熟、更精确的 EPG 波形和统计的工

具，为昆虫生态和进化、植物抗性机理、植物-

介体-病毒互作等方面的研究及为研发害虫和病

毒防控的新策略提供新的技术支撑。 
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