
常用的生物统计方法及其R语言实现
Basic biostatistical tests and their R codes
刘学聪;李欣海
点击:1104次 下载:133次
DOI:10.7679/j.issn.2095-1353.2021.024
作者单位:1. 中国科学院大学生命科学学院,北京 100049;2. 中国科学院动物研究所,北京 100101
中文关键词:参数统计;非参数统计;均值比较;相关性分析;R语言
英文关键词:parametric test; nonparametric test; means (or medians) comparison; association (or correlation) analysis; R language
中文摘要:
统计分析是科学研究中一个极其重要的环节。本文以昆虫学研究为实例,利用模拟数据,总结了14种常用的生物统计方法及其R语言实现,重点强调了如何根据科学问题和样本数据的具体情形选取合适的统计方法。这些统计方法包括可用于均值比较分析的符号检验、Wilcoxon符号秩检验、t-检验、Wilcoxon秩和检验、Kruskal-Wallis检验、Nemenyi检验、Tukey检验、Friedman检验、单因素方差分析、重复测量方差分析和可用于相关性分析的卡方检验、Fisher精确检验、Spearman秩相关分析、Pearson相关分析,可为生物统计或R语言基础薄弱的昆虫学工作者提供参考。
英文摘要:
Statistical analysis is important for many kinds of
entomological research. Based on simulated data, this article reviews 14 basic
statistical tests frequently used in entomological studies and their
corresponding R codes, emphasizing how to choose the appropriate test for a
given investigation and data type. These statistical tests include the sign
test, Wilcoxon signed rank test, t-test, Wilcoxon rank sum test,
Kruskal-Wallis test, Nemenyi test, Tukey test, Friedman test, one-way analysis
of variance, and repeated measures analysis of variance, to compare means or
medians, and the Chi-square test, Fisher’s exact test, Spearman rank
correlation test and Pearson correlation test, to analyze associations or
correlations between variables. This article provides a useful reference for
entomologists with limited knowledge of biostatistics or the R language.